sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第三周测验

本文讨论了在深度学习中超参数选择的重要性,指出网格搜索并非总是最优,强调了超参数调整、计算资源限制、动量超参数取样策略以及批标准化的使用和维护。同时提及了编程框架在深度学习开发中的优势。

课程2_第3周_测验题

目录:目录

第一题

1.如果在大量的超参数中搜索最佳的参数值,那么应该尝试在网格中搜索而不是使用随机值,以便更系统的搜索,而不是依靠运气,请问这句话是正确的吗?

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第二题

2.每个超参数如果设置得不好,都会对训练产生巨大的负面影响,因此所有的超参数都要调整好,请问这是正确的吗?

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第三题

3.在超参数搜索过程中,你尝试只照顾一个模型(使用熊猫策略)还是一起训练大量的模型(鱼子酱策略)在很大程度上取决于:

A. 【  】是否使用批量(batch)或小批量优化(mini-batch optimization)

B. 【  】神经网络中局部最小值(鞍点)的存在性

C. 【  】在你能力范围内,你能够拥有多大的计算能力(注:就是高性能电脑和低性能电脑的区别)

D. 【  】需要调整的超参数的数量

答案:

C.【 √ 】在你能力范围内,你能够拥有多大的计算能力(注:就是高性能电脑和低性能电脑的区别)

第四题

4.如果您认为 β \beta β(动量超参数)介于0.9和0.99之间,那么推荐采用以下哪一种方法来对 β \beta β值进行取样?

A. 【  】

r = np.random.rand()
beta = r * 0.09 + 0.9

B. 【  】

r = np.random.rand()
beta = 1 - 10 ** ( - r - 1 )

C. 【  】

r = np.random.rand()
beta = 1 - 10 ** ( - r + 1 )

D. 【  】

r = np.random.rand()
beta = r * 0.9 + 0.09

答案:

B.【 √ 】

r = np.random.rand()
beta = 1 - 10 ** ( - r - 1 )

第五题

5.找到好的超参数的值是非常耗时的,所以通常情况下你应该在项目开始时做一次,并尝试找到非常好的超参数,这样你就不必再次重新调整它们。请问这正确吗?

A. 【  】对

B. 【  】不对

答案:

B.【 √ 】不对

第六题

6.在视频中介绍的批量标准化中,如果将其应用于神经网络的第l层,您应该对谁进行标准化?

A. 【  】 z [ l ] z^{[l]} z[l]

B. 【  】 W [ l ] W^{[l]} W[l]

C. 【  】 b [ l ] b^{[l]} b[l]

D. 【  】 b [ l ] b^{[l]}

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值