sheng的学习笔记-【中文】【吴恩达课后测验】Course 2 - 改善深层神经网络 - 第一周测验

本文主要讲述了在机器学习中如何合理划分训练、验证和测试集,以及正则化、权重衰减、dropout等技术在减少神经网络方差和过拟合中的应用,包括调整正则化参数和归一化数据对模型性能的影响。

课程2_第1周_测验题

目录:目录

第一题

1.如果你有10,000,000个例子,你会如何划分训练/验证/测试集?

A. 【  】33%训练,33%验证,33%测试

B. 【  】60%训练,20%验证,20%测试

C. 【  】98%训练,1%验证,20%测试

答案:

C.【 √ 】98%训练,1%验证,20%测试

第二题

2.验证集和测试集应该:

A. 【  】来自同一分布

B. 【  】来自不同分布

C. 【  】完全相同(一样的(x, y)对)

D. 【  】数据数量应该相同

答案:

A.【 √ 】来自同一分布

第三题

3.如果你的神经网络方差很高,下列哪个尝试是可能解决问题的?

A. 【  】添加正则项

B. 【  】获取更多测试数据

C. 【  】增加每个隐藏层的神经元数量

D. 【  】用更深的神经网络

E. 【  】用更多的训练数据

答案:

A.【 √ 】添加正则项

E.【 √ 】用更多的训练数据

第四题

4.你正在为苹果,香蕉和橘子制作分类器。 假设您的分类器在训练集上有0.5%的错误,以及验证集上有7%的错误。 以下哪项尝试是有希望改善你的分类器的分类效果的?

A. 【  】增大正则化参数

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值