课程2_第1周_测验题
目录:目录
第一题
1.如果你有10,000,000个例子,你会如何划分训练/验证/测试集?
A. 【 】33%训练,33%验证,33%测试
B. 【 】60%训练,20%验证,20%测试
C. 【 】98%训练,1%验证,20%测试
答案:
C.【 √ 】98%训练,1%验证,20%测试
第二题
2.验证集和测试集应该:
A. 【 】来自同一分布
B. 【 】来自不同分布
C. 【 】完全相同(一样的(x, y)对)
D. 【 】数据数量应该相同
答案:
A.【 √ 】来自同一分布
第三题
3.如果你的神经网络方差很高,下列哪个尝试是可能解决问题的?
A. 【 】添加正则项
B. 【 】获取更多测试数据
C. 【 】增加每个隐藏层的神经元数量
D. 【 】用更深的神经网络
E. 【 】用更多的训练数据
答案:
A.【 √ 】添加正则项
E.【 √ 】用更多的训练数据
第四题
4.你正在为苹果,香蕉和橘子制作分类器。 假设您的分类器在训练集上有0.5%的错误,以及验证集上有7%的错误。 以下哪项尝试是有希望改善你的分类器的分类效果的?
A. 【 】增大正则化参数

本文主要讲述了在机器学习中如何合理划分训练、验证和测试集,以及正则化、权重衰减、dropout等技术在减少神经网络方差和过拟合中的应用,包括调整正则化参数和归一化数据对模型性能的影响。
最低0.47元/天 解锁文章

被折叠的 条评论
为什么被折叠?



