如何理解Gabor滤波器

博客介绍了Gabor滤波器,它能抽取空间局部频度特征,是有效的纹理检测工具。阐述了在二维空间中通过三角函数与高斯函数叠加生成Gabor滤波器,说明了二维Gabor核函数由高斯函数和余弦函数相乘得出,还介绍了OpenCV中getGaborKernel函数的参数,如方向θ等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 

介绍

我们已经知道,傅里叶变换是一种信号处理中的有力工具,可以帮助我们将图像从空域转换到频域,并提取到空域上不易提取的特征。但是经过傅里叶变换后,图像在不同位置的频度特征往往混合在一起,但是Gabor滤波器却可以抽取空间局部频度特征,是一种有效的纹理检测工具。
Figure 1: A sinusoid and it's Fourier spectrumFigure 1: A sinusoid and it's Fourier spectrum

如何生成一个Gabor滤波器

在二维空间中,使用一个三角函数(如正弦函数)与一个高斯函数叠加我们就得到了一个Gabor滤波器[1],如下图。

Figure 2: Gabor filter composition: (a) 2D sinusoid oriented at 30◦ with the x-axis, (b) a Gaussian kernel, (c) the corresponding Gabor filter. Notice how the sinusoid becomes spatially localized.Figure 2: Gabor filter composition: (a) 2D sinusoid oriented at 30◦ with the x-axis, (b) a Gaussian kernel, (c) the corresponding Gabor filter. Notice how the sinusoid becomes spatially localized.

Gabor核函数

二维Gabor核函数由一个高斯函数和一个余弦函数相乘得出,其中θ,ϕ,γ,λ,σθ,ϕ,γ,λ,σ为参数。

在OpenCV中的getGaborKernel函数里需要传入的参数除了上述5个外,还需要传入卷积核的大小。

 

cv::Mat getGaborKernel(Size ksize, double sigma, double theta, double lambd, double gamma, double psi=CV_PI*0.5, int ktype=CV_64F );

 

Figure 3: The Gabor Filter in frequency with the orientation of 0°, 45°, 90°.Figure 3: The Gabor Filter in frequency with the orientation of 0°, 45°, 90°.

参数

Orientation θθ

θθ表示Gabor滤波核中平行条带的方向,有效值为从0~360度的实数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值