Codeforces Round #499 (Div. 2) C题 二分

本文介绍了一道编程竞赛题,涉及到Natasha驾驶火箭从地球出发,途经多个星球,最终返回地球的问题。关键在于计算所需的最小燃料量。通过理解题意,可以发现需要解一个方程,并利用二分搜索在1到1e9的范围内找到答案。题目中给出了行星数量、有效载荷重量、起飞和降落的燃料效率等参数,要求在不超过1e9吨燃料的情况下找到解决方案。如果无法完成飞行,则输出-1。

 Fly

time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

Natasha is going to fly on a rocket to Mars and return to Earth. Also, on the way to Mars, she will land on n−2n−2 intermediate planets. Formally: we number all the planets from 11 to nn. 11 is Earth, nn is Mars. Natasha will make exactly nn flights: 1→2→…n→11→2→…n→1.

Flight from xx to yy consists of two phases: take-off from planet xx and landing to planet yy. This way, the overall itinerary of the trip will be: the 11-st planet →→ take-off from the 11-st planet →→ landing to the 22-nd planet →→ 22-nd planet →→ take-off from the 22-nd planet →→ …… →→ landing to the nn-th planet →→ the nn-th planet →→ take-off from the nn-th planet →→ landing to the 11-st planet →→ the 11-st planet.

The mass of the rocket together with all the useful cargo (but without fuel) is mm tons. However, Natasha does not know how much fuel to load into the rocket. Unfortunately, fuel can only be loaded on Earth, so if the rocket runs out of fuel on some other planet, Natasha will not be able to return home. Fuel is needed to take-off from each planet and to land to each planet. It is known that 11 ton of fuel can lift off aiaitons of rocket from the ii-th planet or to land bibi tons of rocket onto the ii-th planet.

For example, if the weight of rocket is 99 tons, weight of fuel is 33 tons and take-off coefficient is 88 (ai=8ai=8), then 1.51.5 tons of fuel will be burnt (since 1.5⋅8=9+31.5⋅8=9+3). The new weight of fuel after take-off will be 1.51.5 tons.

Please note, that it is allowed to burn non-integral amount of fuel during take-off or landing, and the amount of initial fuel can be non-integral as well.

Help Natasha to calculate the minimum mass of fuel to load into the rocket. Note, that the rocket must spend fuel to carry both useful cargo and the fuel itself. However, it doesn't need to carry the fuel which has already been burnt. Assume, that the rocket takes off and lands instantly.

Input

The first line contains a single integer n (2≤n≤1000) — number of planets.

The second line contains the only integer m (1≤m≤1000) — weight of the payload.

The third line contains nn integers a1,a2,…,an (1≤ai≤1000), where aiai is the number of tons, which can be lifted off by one ton of fuel.

The fourth line contains nn integers b1,b2,…,bn (1≤bi≤1000), where bibi is the number of tons, which can be landed by one ton of fuel.

It is guaranteed, that if Natasha can make a flight, then it takes no more than 109109 tons of fuel.

Output

If Natasha can fly to Mars through (n−2)planets and return to Earth, print the minimum mass of fuel (in tons) that Natasha should take. Otherwise, print a single number −1.

It is guaranteed, that if Natasha can make a flight, then it takes no more than 109109 tons of fuel.

The answer will be considered correct if its absolute or relative error doesn't exceed 10−6. Formally, let your answer be pp, and the jury's answer be qq. Your answer is considered correct if |p−q|max(1,|q|)≤10−6.

Examples

input

2
12
11 8
7 5

output

10.0000000000

input

3 1 1 4 1 2 5 3

output
-1

input
6 2 4 6 3 3 5 6 2 6 3 6 5 3

output
85.4800000000

读懂题意之后可以发现要求出答案实际上是要解一个方程

很自然的想到二分求这个答案;

答案一定在1e9到1之间 所以可以采用二分

坑点:题目保证答案的范围在1e9到1 所以二分的右端点应该是1e9+5;否则wa56(这个数据的答案是1e9,如果不这样会判断输出-1)

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn=2e5+7;
const int INF=0x3f3f3f3f;
const double ESP=1e-8;
int a[maxn];
int b[maxn];
int n,m;
bool check(double x)
{
    //printf("%.10f\n",x);
    int i=1;//出发
    while(i<n)
    {
        x-=(x+m)/a[i];//起飞
        if(x<0) return false;
        x-=(x+m)/b[i+1];//降落
        if(x<0) return false;
        i++;
    }
    x-=(x+m)/a[n];
    if(x<0) return false;
    x-=(x+m)/b[1];
    if(x<0) return false;
    //cout<<x<<endl;
   // cout<<endl;
    return true;
}
int main()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
        scanf("%d",&a[i]);
    for(int i=1;i<=n;++i)
        scanf("%d",&b[i]);
    double r=1e9+5;
    double l=0;
    double ans=-1;
    for(int i=0;i<=100;++i)
    {
        double mid=(l+r)/2;
        if(check(mid)) r=mid,ans=mid;
        else l=mid;
        //printf("%.10f %.10f\n",l,r);
    }
    printf("%.10f\n",ans);
}

 

Codeforces Round 1036 是一场同时面向 Div.1 和 Div.2 参赛者的比赛,通常这类比赛会包含多个具有挑战性的编程目,涵盖算法、数据结构、数学等多个领域。比赛的解和目信息可以帮助参赛者回顾解思路,提升编程能力。 ### 比赛基本信息 - **比赛名称**:Codeforces Round #1036 (Div. 1 and Div. 2) - **比赛时间**:具体时间为 UTC+X(根据实际举办日期和时间表) - **比赛链接**:[Codeforces 官方页面](https://codeforces.com/contest/1343) - **解发布位置**:通常在比赛结束后不久,官方或社区成员会在 Codeforces 博客、GitHub 或其他技术平台上发布解。 ### 目类型与难度分布 该轮比赛通常包括 5 到 7 道目,难度从简单实现到复杂算法不等。例如: - **A**:通常是简单的模拟或数学问。 - **B**:可能涉及字符串处理或基础贪心策略。 - **C**:中等难度,可能需要掌握基本的数据结构如数组、排序等。 - **D及以后**:较高难度,可能涉及图论、动态规划、数论等高级算法。 ### 参赛情况与亮点 - **参与人数**:通常超过 10,000 名选手参加。 - **热门话**:比赛中某些目可能会引发广泛讨论,尤其是那些需要用到巧妙构造或优化技巧的问。 - **知名选手表现**:顶尖选手如 tourist、Um_nik 等通常会以极快的速度完成所有目,并占据排行榜前列。 ### 示例代码片段 以下是一个典型的 Codeforces 目解法示例,适用于某道中等难度目: ```cpp #include <bits/stdc++.h> using namespace std; int main() { int t; cin >> t; while(t--) { long long l, r; cin >> l >> r; // 假设 e 是一个预处理好的符合条件的数组 // 使用二分查找来统计区间 [l, r] 内的有效数字个数 long long ans = upper_bound(e.begin(), e.end(), r) - lower_bound(e.begin(), e.end(), l); cout << ans << endl; } return 0; } ``` ### 解资源推荐 - **Codeforces 官方博客**:通常会有详细的解和作者说明。 - **GitHub 仓库**:许多参赛者会将自己的解法上传至 GitHub,便于他人学习。 - **知乎专栏 / 优快云 / 博客园**:中文社区中也常有高质量的赛后总结与分析文章。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值