Knapsack problem
Given a set of n items, each with a weight w[i] and a value v[i], determine a way to choose the items into a knapsack so that the total weight is less than or equal to a given limit B and the total value is as large as possible. Find the maximum total value. (Note that each item can be only chosen once).
Input
The first line contains the integer T indicating to the number of test cases.
For each test case, the first line contains the integers n and B.
Following n lines provide the information of each item.
The i-th line contains the weight w[i] and the value v[i] of the i-th item respectively.
1 <= number of test cases <= 100
1 <= n <= 500
1 <= B, w[i] <= 1000000000
1 <= v[1]+v[2]+...+v[n] <= 5000
All the inputs are integers.
For each test case, output the maximum value.
1 5 15 12 4 2 2 1 1 4 10 1 2Sample Output
15
我们用dp针对不同的价值计算最小的重量
当时想到了这样转变就是不知道怎么初始化了结果就没做出来哎
初始化为INF表示不存在而且由于前0个物品中什么都挑选不了,所以初始化dp[0] = 0;
code:
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int INF = 0x3f3f3f3f;
int v[1010],w[1010];
int dp[5050];//dp[i]表示价值为i时的最小重量
int main(){
int t;
scanf("%d",&t);
while(t--){
int n,W;
scanf("%d%d",&n,&W);
int V = 0;
for(int i = 0; i < n; i++){
scanf("%d%d",&w[i],&v[i]);
V += v[i];
}
//初始化(很重要!)
memset(dp,INF,sizeof(dp));
dp[0] = 0;
for(int i = 0; i < n; i++){
for(int j = V; j >= v[i]; j--){
dp[j] = min(dp[j],dp[j-v[i]]+w[i]);
}
}
for(int i = V; i >= 0; i--){
if(dp[i] <= W){
printf("%d\n",i);
break;
}
}
}
return 0;
}
本文介绍了一个背包问题的经典求解方法,通过动态规划算法确定在给定容量限制下所能获得的最大价值。文章提供了一段C++代码实现,展示了如何初始化状态数组,并通过迭代更新来寻找最优解。

被折叠的 条评论
为什么被折叠?



