多模态统一框架:基于下一帧预测的视频化方法

部署运行你感兴趣的模型镜像

摘要

多模态学习涉及整合文本、图像、音频和视频等多种模态信息,对视觉问答、跨模态检索和字幕生成等复杂任务至关重要。传统方法依赖模态特定编码器和后期融合技术,限制了其适应新任务或模态的可扩展性和灵活性。为解决这些问题,本文提出了一种新颖框架,将自然语言处理(NLP)中的任务重构思想扩展至多模态学习领域。

核心方法

通过将多样化多模态任务重新定义为统一的下一帧预测问题,该框架允许单一模型处理不同模态而无需模态专用组件。所有输入和输出均被视为视频中的连续帧,从而实现模态无缝集成和跨任务知识迁移。

实验验证

在文本到文本、图像到文本、视频到视频、视频到文本及音频到文本等任务上的实验表明,该模型能以最小适配成本实现跨模态泛化。研究证实,任务重构可显著简化多模态模型设计,为通用多模态基础模型奠定基础。

技术贡献

  • 统一架构:消除模态专用组件,通过视频序列化实现多模态统一处理。
  • 灵活适配:支持动态扩展新模态,仅需调整输入帧序列化策略。
  • 性能验证:在5类跨模态任务中均展现竞争力,代码与模型已开源。

更多精彩内容 请关注我的个人公众号 公众号(办公AI智能小助手)
公众号二维码
外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传

您可能感兴趣的与本文相关的镜像

Qwen3-VL-8B

Qwen3-VL-8B

图文对话
Qwen3-VL

Qwen3-VL是迄今为止 Qwen 系列中最强大的视觉-语言模型,这一代在各个方面都进行了全面升级:更优秀的文本理解和生成、更深入的视觉感知和推理、扩展的上下文长度、增强的空间和视频动态理解能力,以及更强的代理交互能力

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值