1101 Quick Sort (25 point(s))

本文深入探讨了快速排序算法中的经典分区过程,讲解了如何确定一个元素是否能作为分区的枢轴,即所有左侧元素小于它,右侧元素大于它的条件。通过示例详细解释了在给定一组正整数的情况下,如何找出所有可能的枢轴候选者。

 1101 Quick Sort (25 point(s))

There is a classical process named partition in the famous quick sort algorithm. In this process we typically choose one element as the pivot. Then the elements less than the pivot are moved to its left and those larger than the pivot to its right. Given N distinct positive integers after a run of partition, could you tell how many elements could be the selected pivot for this partition?

For example, given N=5 and the numbers 1, 3, 2, 4, and 5. We have:

  • 1 could be the pivot since there is no element to its left and all the elements to its right are larger than it;
  • 3 must not be the pivot since although all the elements to its left are smaller, the number 2 to its right is less than it as well;
  • 2 must not be the pivot since although all the elements to its right are larger, the number 3 to its left is larger than it as well;
  • and for the similar reason, 4 and 5 could also be the pivot.

Hence in total there are 3 pivot candidates.

Input Specification:

Each input file contains one test case. For each case, the first line gives a positive integer N (≤10​5​​). Then the next line contains N distinct positive integers no larger than 10​9​​. The numbers in a line are separated by spaces.

Output Specification:

For each test case, output in the first line the number of pivot candidates. Then in the next line print these candidates in increasing order. There must be exactly 1 space between two adjacent numbers, and no extra space at the end of each line.

Sample Input:

5
1 3 2 4 5

Sample Output:

3
1 4 5

题意:可以作为pivot的元素满足条件:在它之前的元素都小于它,在它之后的元素都大于它。

思路:动态规划思想。使用两个数组,采用两次循环,分别标记每一个元素是否满足这两个要求。如果都满足,则可以输出。

注意点:最后需要输出换行符,否则case#2会PE(22分)。

#include<iostream>
#include<cstring>
#include<vector>
#include<algorithm>
using namespace std;
const int MAX = 1e5+7;
int a[MAX];
bool leftPivot[MAX]={false};
bool rightPivot[MAX]={false};
int main(void){
	int N;cin>>N;
	for(int i=0;i<N;i++) cin>>a[i];
	int curMax,curMin;
	for(int i=0;i<N;i++){
		if(i==0){
			curMax = a[i];
			leftPivot[i]=true;
		}
		else if(i>0&&a[i]>curMax){
			leftPivot[i]=true;
			curMax = max(curMax,a[i]);
		}
	}
	for(int i=N-1;i>=0;i--){
		if(i==N-1){
			curMin = a[i];
			rightPivot[i]=true;
		}
		else if(i<N-1&&a[i]<curMin){
			rightPivot[i]=true;
			curMin = min(curMin,a[i]);
		}
	}
	vector<int> v;
	for(int i=0;i<N;i++){
		if(rightPivot[i]&&leftPivot[i]) v.push_back(a[i]);
	}
	cout<<v.size()<<endl;
	for(int i=0;i<v.size();i++){
		if(i==0) cout<<v[i];
		else cout<<" "<<v[i];
	}
	cout<<endl;
	return 0;
} 

 

【复现】并_离网风光互补制氢合成氨系统容量-调度优化分析(Python代码实现)内容概要:本文围绕“并_离网风光互补制氢合成氨系统容量-调度优化分析”的主题,提供了基于Python代码实现的技术研究与复现方法。通过构建风能、太阳能互补的可再生能源系统模型,结合电解水制氢与合成氨工艺流程,对系统的容量配置与运行调度进行联合优化分析。利用优化算法求解系统在不同运行模式下的最优容量配比和调度策略,兼顾经济性、能效性和稳定性,适用于并网与离网两种场景。文中强调通过代码实践完成系统建模、约束设定、目标函数设计及求解过程,帮助读者掌握综合能源系统优化的核心方法。; 适合人群:具备一定Python编程基础和能源系统背景的研究生、科研人员及工程技术人员,尤其适合从事可再生能源、氢能、综合能源系统优化等相关领域的从业者;; 使用场景及目标:①用于教学与科研中对风光制氢合成氨系统的建模与优化训练;②支撑实际项目中对多能互补系统容量规划与调度策略的设计与验证;③帮助理解优化算法在能源系统中的应用逻辑与实现路径;; 阅读建议:建议读者结合文中提供的Python代码进行逐模块调试与运行,配合文档说明深入理解模型构建细节,重点关注目标函数设计、约束条件设置及求解器调用方式,同时可对比Matlab版本实现以拓宽工具应用视野。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值