Happy 2006
| Time Limit: 3000MS | Memory Limit: 65536K | |
| Total Submissions: 9987 | Accepted: 3434 |
Description
Two positive integers are said to be relatively prime to each other if the Great Common Divisor (GCD) is 1. For instance, 1, 3, 5, 7, 9...are all relatively prime to 2006.
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Now your job is easy: for the given integer m, find the K-th element which is relatively prime to m when these elements are sorted in ascending order.
Input
The input contains multiple test cases. For each test case, it contains two integers m (1 <= m <= 1000000), K (1 <= K <= 100000000).
Output
Output the K-th element in a single line.
Sample Input
2006 1 2006 2 2006 3
Sample Output
1 3 5
解题思路:二分枚举1-2^64之间的数x,找到1-x与m互质的个数s,这里利用容斥原理,如果s与k相等,那么该x即为结果;
参考代码:
#include <iostream>
#include <vector>
#include <math.h>
using namespace std;
typedef long long ll;
const int MAX = 1000010;
int p[MAX],count;
void fun(ll n){
ll i;
count=0;
for (i=2;i*i<=n;i++){
if (n%i==0){
p[count++]=i;
while (n%i==0)
n/=i;
}
}
if (n>1)
p[count++]=n;
}
ll solve(ll n,ll r){
ll sum=0;
for (int i=1;i<(1<<count);i++){
ll mult=1,bits=0;
for (int j=0;j<count;j++){
if (i&(1<<j)){
bits++;
mult*=p[j];
}
}
ll cur=r/mult;
if (bits%2==1)
sum+=cur;
else
sum-=cur;
}
return r - sum;
}
int main(){
ll n,m,mid,num;
while (cin>>n>>m){
fun(n);
ll r=0xffffffff,l=1;
while (r-l>0){
mid=(r+l)/2;
num=solve(n,mid);
if (num>=m)
r=mid;
else
l=mid+1;
}
cout<<l<<endl;
}
return 0;
}
本文讨论了如何通过二分枚举和容斥原理找到给定整数m的第k个相对质数,详细解释了解题思路和算法实现。
1166

被折叠的 条评论
为什么被折叠?



