对于bfs宽度搜索基础练习都是大同小异,也就是说,基本上都需要一个标记数组,加上一个队列,其本质就是不停的入队,出队,直到找到结果为止,BFS对于求最短路径等问题,具有很好地优势,但是同时要注意剪枝,也就是用标记数组跳过已经检索的部分。
Farmer John has been informed of the location of a fugitive cow and wants to catch her immediately. He starts at a point N (0 ≤ N ≤ 100,000) on a number line and the cow is at a point K (0 ≤ K ≤ 100,000) on the same number line. Farmer John has two modes of transportation: walking and teleporting.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
* Walking: FJ can move from any point X to the points X - 1 or X + 1 in a single minute
* Teleporting: FJ can move from any point X to the point 2 × X in a single minute.
If the cow, unaware of its pursuit, does not move at all, how long does it take for Farmer John to retrieve it?
Input
Line 1: Two space-separated integers: N and K
Output
Line 1: The least amount of time, in minutes, it takes for Farmer John to catch the fugitive cow.
Sample Input
5 17
Sample Output
4
Hint
The fastest way for Farmer John to reach the fugitive cow is to move along the following path: 5-10-9-18-17, which takes 4 minutes.
题目大意为,在一条直线上给你两个数字,有3种移动数字的方式吗,一种是坐标+1,一种是-1,一种是*2,最后要求你输出,从第一个坐标到第二个坐标所花的最短时间,每次移动算一分钟。
分析:
这显然是一个广度搜索的问题,对于每一种情况所能到达的位置入队,然后不断更新,直到找到为止。
AC代码
#include<cstdio>
#include<queue>
#include<cstring>
using namespace std;
int book[1000000];
int n,k;
struct bu
{
int x;
int s;
};
int check(int x)
{
if(x<0||x>1000000||book[x]==1)
{
return 0;
}
else return 1;
}
int bfs(int x)
{
queue<bu> pi;
bu p,q,xa;
q.x=x;
q.s=0;
book[x]=1;
pi.push(q);
while(!pi.empty())
{
p=pi.front();
pi.pop();
if(p.x==k)
{
return p.s;
}
xa.x=p.x+1;
if(check(xa.x))
{
book[xa.x]=1;
xa.s=p.s+1;
pi.push(xa);
}
xa.x=p.x-1;
if(check(xa.x))
{
book[xa.x]=1;
xa.s=p.s+1;
pi.push(xa);
}
xa.x=2*p.x;
if(check(xa.x))
{
book[xa.x]=1;
xa.s=p.s+1;
pi.push(xa);
}
}
return -1;
}
int main()
{
int sum;
scanf("%d%d",&n,&k);
sum=bfs(n);
printf("%d",sum);
}