import numpy as np
# copy & deep copy
a = np.arange(4)
print(a)
b = a
c = a
d = b
# 改变a[0] 的值
print('******************')
a[0] = 11
print(a)
print(b)
print(b is a)
print('******************')
print(c)
print(c is a)
print('******************')
d[1: 3] = [22,33]
print(d)
print(a)
print(d is a)
print('******************')
# deep copy
b = a.copy()
print(b)
a[3] = 44
print(a)
print(b)
print('******************')
结果:
[0 1 2 3]
[11 1 2 3]
[11 1 2 3]
True
[11 1 2 3]
True
[11 22 33 3]
[11 22 33 3]
True
[11 22 33 3]
[11 22 33 44]
[11 22 33 3]
本文通过实例展示了Python中NumPy库的数组及其浅拷贝与深拷贝的区别。通过修改数组元素,演示了不同拷贝方式之间的联系与区别,有助于理解如何在实际应用中正确使用数组拷贝。
2260

被折叠的 条评论
为什么被折叠?



