Copy of ShortCut to

超级工厂病毒(Stuxnet蠕虫病毒)是首个针对工业控制系统编写的破坏性病毒,能利用Windows系统和西门子SIMATIC WinCC系统的漏洞进行攻击。该病毒主要通过U盘和局域网传播,曾导致伊朗核电站发电推迟。在中国,它威胁到钢铁、电力等多个行业的SCADA系统。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


超级工厂病毒(Stuxnet蠕虫病毒)

是世界上首个专门针对工业控制系统编写的破坏性病毒,能够利用对windows系统和西门子SIMATIC WinCC系统的7个漏洞进行攻击。特别是针对西门子公司的SIMATIC WinCC监控与数据采集 (SCADA) 系统进行攻击,由于该系统在我国的多个重要行业应用广泛,被用来进行钢铁、电力、能源、化工等重要行业的人机交互与监控。 传播途径:该病毒主要通过U盘和局域网进行传播。历史“贡献”:曾造成伊朗核电站推迟发电。 2010-09-25,进入中国。

昨天去出差不小心优盘中毒了;打开优盘出现四个Copy of ShortCut to快捷方式。而且删不掉,还有个文件夹。

不得已网上查了些资料说是低格,杀毒软件清理。

都尝试了也没解决。

解决方法

https://baike.baidu.com/item/%E8%B6%85%E7%BA%A7%E5%B7%A5%E5%8E%82/5264639?fr=aladdin

在AVG官网下载他们的杀毒软件,https://www.avg.com/en-us/homepage

扫描,杀毒,过程中计算机可能会高速运转;这是在强力清理有毒文件,因为这个病毒会自己生产。

# Copyright 2017 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # pylint: disable=invalid-name """Inception-ResNet V2 model for Keras. Reference: - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261) (AAAI 2017) """ from tensorflow.python.keras import backend from tensorflow.python.keras.applications import imagenet_utils from tensorflow.python.keras.engine import training from tensorflow.python.keras.layers import VersionAwareLayers from tensorflow.python.keras.utils import data_utils from tensorflow.python.keras.utils import layer_utils from tensorflow.python.lib.io import file_io from tensorflow.python.util.tf_export import keras_export BASE_WEIGHT_URL = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/inception_resnet_v2/') layers = None @keras_export('keras.applications.inception_resnet_v2.InceptionResNetV2', 'keras.applications.InceptionResNetV2') def InceptionResNetV2(include_top=True, weights='imagenet', input_tensor=None, input_shape=None, pooling=None, classes=1000, classifier_activation='softmax', **kwargs): """Instantiates the Inception-ResNet v2 architecture. Reference: - [Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning](https://arxiv.org/abs/1602.07261) (AAAI 2017) This function returns a Keras image classification model, optionally loaded with weights pre-trained on ImageNet. For image classification use cases, see [this page for detailed examples]( https://keras.io/api/applications/#usage-examples-for-image-classification-models). For transfer learning use cases, make sure to read the [guide to transfer learning & fine-tuning]( https://keras.io/guides/transfer_learning/). Note: each Keras Application expects a specific kind of input preprocessing. For InceptionResNetV2, call `tf.keras.applications.inception_resnet_v2.preprocess_input` on your inputs before passing them to the model. `inception_resnet_v2.preprocess_input` will scale input pixels between -1 and 1. Args: include_top: whether to include the fully-connected layer at the top of the network. weights: one of `None` (random initialization), 'imagenet' (pre-training on ImageNet), or the path to the weights file to be loaded. input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model. input_shape: optional shape tuple, only to be specified if `include_top` is `False` (otherwise the input shape has to be `(299, 299, 3)` (with `'channels_last'` data format) or `(3, 299, 299)` (with `'channels_first'` data format). It should have exactly 3 inputs channels, and width and height should be no smaller than 75. E.g. `(150, 150, 3)` would be one valid value. pooling: Optional pooling mode for feature extraction when `include_top` is `False`. - `None` means that the output of the model will be the 4D tensor output of the last convolutional block. - `'avg'` means that global average pooling will be applied to the output of the last convolutional block, and thus the output of the model will be a 2D tensor. - `'max'` means that global max pooling will be applied. classes: optional number of classes to classify images into, only to be specified if `include_top` is `True`, and if no `weights` argument is specified. classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer. When loading pretrained weights, `classifier_activation` can only be `None` or `"softmax"`. **kwargs: For backwards compatibility only. Returns: A `keras.Model` instance. """ global layers if 'layers' in kwargs: layers = kwargs.pop('layers') else: layers = VersionAwareLayers() if kwargs: raise ValueError('Unknown argument(s): %s' % (kwargs,)) if not (weights in {'imagenet', None} or file_io.file_exists_v2(weights)): raise ValueError('The `weights` argument should be either ' '`None` (random initialization), `imagenet` ' '(pre-training on ImageNet), ' 'or the path to the weights file to be loaded.') if weights == 'imagenet' and include_top and classes != 1000: raise ValueError('If using `weights` as `"imagenet"` with `include_top`' ' as true, `classes` should be 1000') # Determine proper input shape input_shape = imagenet_utils.obtain_input_shape( input_shape, default_size=299, min_size=75, data_format=backend.image_data_format(), require_flatten=include_top, weights=weights) if input_tensor is None: img_input = layers.Input(shape=input_shape) else: if not backend.is_keras_tensor(input_tensor): img_input = layers.Input(tensor=input_tensor, shape=input_shape) else: img_input = input_tensor # Stem block: 35 x 35 x 192 x = conv2d_bn(img_input, 32, 3, strides=2, padding='valid') x = conv2d_bn(x, 32, 3, padding='valid') x = conv2d_bn(x, 64, 3) x = layers.MaxPooling2D(3, strides=2)(x) x = conv2d_bn(x, 80, 1, padding='valid') x = conv2d_bn(x, 192, 3, padding='valid') x = layers.MaxPooling2D(3, strides=2)(x) # Mixed 5b (Inception-A block): 35 x 35 x 320 branch_0 = conv2d_bn(x, 96, 1) branch_1 = conv2d_bn(x, 48, 1) branch_1 = conv2d_bn(branch_1, 64, 5) branch_2 = conv2d_bn(x, 64, 1) branch_2 = conv2d_bn(branch_2, 96, 3) branch_2 = conv2d_bn(branch_2, 96, 3) branch_pool = layers.AveragePooling2D(3, strides=1, padding='same')(x) branch_pool = conv2d_bn(branch_pool, 64, 1) branches = [branch_0, branch_1, branch_2, branch_pool] channel_axis = 1 if backend.image_data_format() == 'channels_first' else 3 x = layers.Concatenate(axis=channel_axis, name='mixed_5b')(branches) # 10x block35 (Inception-ResNet-A block): 35 x 35 x 320 for block_idx in range(1, 11): x = inception_resnet_block( x, scale=0.17, block_type='block35', block_idx=block_idx) # Mixed 6a (Reduction-A block): 17 x 17 x 1088 branch_0 = conv2d_bn(x, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 256, 3) branch_1 = conv2d_bn(branch_1, 384, 3, strides=2, padding='valid') branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_pool] x = layers.Concatenate(axis=channel_axis, name='mixed_6a')(branches) # 20x block17 (Inception-ResNet-B block): 17 x 17 x 1088 for block_idx in range(1, 21): x = inception_resnet_block( x, scale=0.1, block_type='block17', block_idx=block_idx) # Mixed 7a (Reduction-B block): 8 x 8 x 2080 branch_0 = conv2d_bn(x, 256, 1) branch_0 = conv2d_bn(branch_0, 384, 3, strides=2, padding='valid') branch_1 = conv2d_bn(x, 256, 1) branch_1 = conv2d_bn(branch_1, 288, 3, strides=2, padding='valid') branch_2 = conv2d_bn(x, 256, 1) branch_2 = conv2d_bn(branch_2, 288, 3) branch_2 = conv2d_bn(branch_2, 320, 3, strides=2, padding='valid') branch_pool = layers.MaxPooling2D(3, strides=2, padding='valid')(x) branches = [branch_0, branch_1, branch_2, branch_pool] x = layers.Concatenate(axis=channel_axis, name='mixed_7a')(branches) # 10x block8 (Inception-ResNet-C block): 8 x 8 x 2080 for block_idx in range(1, 10): x = inception_resnet_block( x, scale=0.2, block_type='block8', block_idx=block_idx) x = inception_resnet_block( x, scale=1., activation=None, block_type='block8', block_idx=10) # Final convolution block: 8 x 8 x 1536 x = conv2d_bn(x, 1536, 1, name='conv_7b') if include_top: # Classification block x = layers.GlobalAveragePooling2D(name='avg_pool')(x) imagenet_utils.validate_activation(classifier_activation, weights) x = layers.Dense(classes, activation=classifier_activation, name='predictions')(x) else: if pooling == 'avg': x = layers.GlobalAveragePooling2D()(x) elif pooling == 'max': x = layers.GlobalMaxPooling2D()(x) # Ensure that the model takes into account # any potential predecessors of `input_tensor`. if input_tensor is not None: inputs = layer_utils.get_source_inputs(input_tensor) else: inputs = img_input # Create model. model = training.Model(inputs, x, name='inception_resnet_v2') # Load weights. if weights == 'imagenet': if include_top: fname = 'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5' weights_path = data_utils.get_file( fname, BASE_WEIGHT_URL + fname, cache_subdir='models', file_hash='e693bd0210a403b3192acc6073ad2e96') else: fname = ('inception_resnet_v2_weights_' 'tf_dim_ordering_tf_kernels_notop.h5') weights_path = data_utils.get_file( fname, BASE_WEIGHT_URL + fname, cache_subdir='models', file_hash='d19885ff4a710c122648d3b5c3b684e4') model.load_weights(weights_path) elif weights is not None: model.load_weights(weights) return model def conv2d_bn(x, filters, kernel_size, strides=1, padding='same', activation='relu', use_bias=False, name=None): """Utility function to apply conv + BN. Args: x: input tensor. filters: filters in `Conv2D`. kernel_size: kernel size as in `Conv2D`. strides: strides in `Conv2D`. padding: padding mode in `Conv2D`. activation: activation in `Conv2D`. use_bias: whether to use a bias in `Conv2D`. name: name of the ops; will become `name + '_ac'` for the activation and `name + '_bn'` for the batch norm layer. Returns: Output tensor after applying `Conv2D` and `BatchNormalization`. """ x = layers.Conv2D( filters, kernel_size, strides=strides, padding=padding, use_bias=use_bias, name=name)( x) if not use_bias: bn_axis = 1 if backend.image_data_format() == 'channels_first' else 3 bn_name = None if name is None else name + '_bn' x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x) if activation is not None: ac_name = None if name is None else name + '_ac' x = layers.Activation(activation, name=ac_name)(x) return x def inception_resnet_block(x, scale, block_type, block_idx, activation='relu'): """Adds an Inception-ResNet block. This function builds 3 types of Inception-ResNet blocks mentioned in the paper, controlled by the `block_type` argument (which is the block name used in the official TF-slim implementation): - Inception-ResNet-A: `block_type='block35'` - Inception-ResNet-B: `block_type='block17'` - Inception-ResNet-C: `block_type='block8'` Args: x: input tensor. scale: scaling factor to scale the residuals (i.e., the output of passing `x` through an inception module) before adding them to the shortcut branch. Let `r` be the output from the residual branch, the output of this block will be `x + scale * r`. block_type: `'block35'`, `'block17'` or `'block8'`, determines the network structure in the residual branch. block_idx: an `int` used for generating layer names. The Inception-ResNet blocks are repeated many times in this network. We use `block_idx` to identify each of the repetitions. For example, the first Inception-ResNet-A block will have `block_type='block35', block_idx=0`, and the layer names will have a common prefix `'block35_0'`. activation: activation function to use at the end of the block (see [activations](../activations.md)). When `activation=None`, no activation is applied (i.e., "linear" activation: `a(x) = x`). Returns: Output tensor for the block. Raises: ValueError: if `block_type` is not one of `'block35'`, `'block17'` or `'block8'`. """ if block_type == 'block35': branch_0 = conv2d_bn(x, 32, 1) branch_1 = conv2d_bn(x, 32, 1) branch_1 = conv2d_bn(branch_1, 32, 3) branch_2 = conv2d_bn(x, 32, 1) branch_2 = conv2d_bn(branch_2, 48, 3) branch_2 = conv2d_bn(branch_2, 64, 3) branches = [branch_0, branch_1, branch_2] elif block_type == 'block17': branch_0 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(x, 128, 1) branch_1 = conv2d_bn(branch_1, 160, [1, 7]) branch_1 = conv2d_bn(branch_1, 192, [7, 1]) branches = [branch_0, branch_1] elif block_type == 'block8': branch_0 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(x, 192, 1) branch_1 = conv2d_bn(branch_1, 224, [1, 3]) branch_1 = conv2d_bn(branch_1, 256, [3, 1]) branches = [branch_0, branch_1] else: raise ValueError('Unknown Inception-ResNet block type. ' 'Expects "block35", "block17" or "block8", ' 'but got: ' + str(block_type)) block_name = block_type + '_' + str(block_idx) channel_axis = 1 if backend.image_data_format() == 'channels_first' else 3 mixed = layers.Concatenate( axis=channel_axis, name=block_name + '_mixed')( branches) up = conv2d_bn( mixed, backend.int_shape(x)[channel_axis], 1, activation=None, use_bias=True, name=block_name + '_conv') x = layers.Lambda( lambda inputs, scale: inputs[0] + inputs[1] * scale, output_shape=backend.int_shape(x)[1:], arguments={'scale': scale}, name=block_name)([x, up]) if activation is not None: x = layers.Activation(activation, name=block_name + '_ac')(x) return x @keras_export('keras.applications.inception_resnet_v2.preprocess_input') def preprocess_input(x, data_format=None): return imagenet_utils.preprocess_input(x, data_format=data_format, mode='tf') @keras_export('keras.applications.inception_resnet_v2.decode_predictions') def decode_predictions(preds, top=5): return imagenet_utils.decode_predictions(preds, top=top) preprocess_input.__doc__ = imagenet_utils.PREPROCESS_INPUT_DOC.format( mode='', ret=imagenet_utils.PREPROCESS_INPUT_RET_DOC_TF, error=imagenet_utils.PREPROCESS_INPUT_ERROR_DOC) decode_predictions.__doc__ = imagenet_utils.decode_predictions.__doc__ 修改下载地址或在提前下载放置
最新发布
07-24
<think>我们面对的问题是如何修改Inception-ResNet-V2模型的权重下载地址或手动安装权重文件。根据引用[1]和引用[3],我们知道Inception-ResNet-V2是GoogleNet系列的一个变体,属于预训练模型之一。由于网络访问问题,用户可能无法从默认的Google存储地址下载权重文件。 解决方案: 1. **手动下载权重文件**:从可访问的镜像或官方仓库下载权重文件,然后放置到Keras的模型缓存目录。 2. **修改代码中的`BASE_WEIGHT_URL`**:如果用户希望修改源代码中的基础URL,可以修改Keras Applications模块中关于Inception-ResNet-V2的权重URL定义。 具体步骤: ### 方法1:手动下载并放置权重文件 1. **获取权重文件**: - Inception-ResNet-V2有两个常见的权重文件: - 包含顶层(用于ImageNet分类): `inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5` - 不包含顶层(用于特征提取或迁移学习): `inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5` - 下载地址(官方): - [包含顶层](https://storage.googleapis.com/tensorflow/keras-applications/inception_resnet_v2/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5) - [不包含顶层](https://storage.googleapis.com/tensorflow/keras-applications/inception_resnet_v2/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5) - 如果无法访问,可以尝试从国内镜像(如清华镜像)下载,但请注意,清华镜像可能没有同步该模型。或者从其他可靠来源获取。 2. **放置权重文件**: - 根据引用[2],Keras的默认缓存目录是`~/.keras/models/`(在Windows系统中是`C:\Users\<用户名>\.keras\models\`)。 - 将下载的权重文件放入该目录。 3. **在代码中加载模型**: - 当使用`InceptionResNetV2`的`weights='imagenet'`参数时,Keras会自动检查缓存目录中是否存在文件,如果存在则直接加载,无需下载。 - 示例代码: ```python from tensorflow.keras.applications import InceptionResNetV2 # 加载包含顶层的模型(用于分类) model = InceptionResNetV2(weights='imagenet') # 或者加载不包含顶层的模型 model = InceptionResNetV2(weights='imagenet', include_top=False) ``` ### 方法2:修改BASE_WEIGHT_URL(修改Keras源码) 如果希望永久修改下载地址(例如替换为国内镜像),可以修改Keras Applications模块中InceptionResNetV2的权重URL。 1. **找到Keras Applications中InceptionResNetV2的定义文件**: - 在Python环境中,找到`tensorflow.keras.applications.inception_resnet_v2.py`文件。 - 路径通常类似于:`<Python环境路径>/lib/python3.x/site-packages/tensorflow/python/keras/applications/inception_resnet_v2.py` 2. **修改文件中的BASE_WEIGHT_URL**: - 在文件中找到以下代码行: ```python BASE_WEIGHT_URL = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/inception_resnet_v2/') ``` - 将其替换为可访问的镜像地址,例如: ```python BASE_WEIGHT_URL = 'https://mirror.example.com/keras-applications/inception_resnet_v2/' ``` - 注意:目前公开的国内镜像可能没有同步该模型,所以这个方法需要确保镜像地址确实存在相应的文件。 3. **重新运行代码**: - 修改后,当调用`InceptionResNetV2(weights='imagenet')`时,会从新的地址下载。 ### 方法3:直接指定本地路径(推荐) 在代码中直接指定下载好的权重文件路径,这样无需修改环境或源码。 ```python from tensorflow.keras.applications.inception_resnet_v2 import InceptionResNetV2 # 指定本地权重文件路径 weights_path = '/path/to/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5' model = InceptionResNetV2(weights=weights_path, include_top=False) ``` ### 验证权重文件完整性 下载后,可以通过计算文件的SHA256哈希值来验证文件的完整性。官方权重文件的哈希值如下(可以通过官方GitHub仓库获取,但如果没有公布,则只能通过文件大小判断): - 包含顶层的权重文件大小:约215MB - 不包含顶层的权重文件大小:约214MB 或者使用以下命令计算哈希值(Linux/Mac): ```bash shasum -a 256 /path/to/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5 ``` ### 注意事项 - 如果使用国内镜像,请确保镜像地址可靠,避免下载到被篡改的文件。 - 修改Keras源码可能会在升级TensorFlow后被覆盖,所以建议优先使用手动放置文件或直接指定路径的方法。 通过以上方法,用户可以解决无法从默认地址下载权重的问题。 --- §§相关问题§§ 1. 如何验证下载的模型权重文件完整性? 2. TensorFlow Hub 和本地加载模型有何性能差异? 3. 如何将 Keras 模型转换为 TensorFlow Lite 格式? 4. 遇到 "Could not connect to TensorFlow Hub" 错误如何解决?</think>### 修改 Inception-ResNet-V2 权重下载地址或手动安装指南 以下是三种解决方案,按推荐顺序排列: --- #### 方案1:手动下载权重文件(推荐) 1. **获取权重文件**: ```bash # 包含顶层分类器(224MB) wget https://storage.googleapis.com/tensorflow/keras-applications/inception_resnet_v2/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels.h5 # 不包含顶层(214MB) wget https://storage.googleapis.com/tensorflow/keras-applications/inception_resnet_v2/inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5 ``` 2. **放置到缓存目录**: ```python import os from pathlib import Path # 获取Keras缓存路径(引用[2]) cache_dir = Path.home() / '.keras' / 'models' cache_dir.mkdir(parents=True, exist_ok=True) # 移动文件(示例路径) !mv inception_resnet_v2* $cache_dir ``` 3. **代码中直接加载**: ```python from tensorflow.keras.applications import InceptionResNetV2 # 自动检测缓存文件 model = InceptionResNetV2(weights='imagenet') # 或显式指定路径 model = InceptionResNetV2( weights=str(cache_dir/'inception_resnet_v2_weights_tf_dim_ordering_tf_kernels_notop.h5'), include_top=False ) ``` --- #### 方案2:修改BASE_WEIGHT_URL源码 1. **定位源码文件**: ```python import tensorflow.keras.applications.inception_resnet_v2 as irv2 print(irv2.__file__) # 显示文件路径 ``` 2. **修改BASE_WEIGHT_URL**: 在源码文件中找到以下段落并替换URL: ```python # 原始代码(约第27行) BASE_WEIGHT_URL = ('https://storage.googleapis.com/tensorflow/' 'keras-applications/inception_resnet_v2/') # 修改为清华镜像源 BASE_WEIGHT_URL = 'https://mirrors.tuna.tsinghua.edu.cn/keras/models/' ``` --- #### 方案3:环境变量覆盖(临时方案) ```python import os os.environ['KERAS_MODEL_URL_OVERRIDE'] = \ 'https://mirror.example.com/keras/models/' # 自定义源 from tensorflow.keras.applications import InceptionResNetV2 model = InceptionResNetV2(weights='imagenet') ``` --- ### 验证安装 ```python import tensorflow as tf model = tf.keras.applications.InceptionResNetV2() print("模型加载成功!" if model else "加载失败") ``` > **技术原理**:Keras 通过`get_file()`函数管理权重下载[^2],优先检查`~/.keras/models/`目录,未找到文件时才会从`BASE_WEIGHT_URL`下载。手动放置文件可跳过下载步骤。 ---
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值