(rt) root@45qqmqi84adhm-0:/202408540022/rt_copy/RTDETR-main# python train.py
WARNING ⚠️ no model scale passed. Assuming scale='l'.
from n params module arguments
0 -1 1 2216100 fasternet_t0 []
1 -1 1 82432 ultralytics.nn.modules.conv.Conv [320, 256, 1, 1, None, 1, 1, False]
2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
5 3 1 41472 ultralytics.nn.modules.conv.Conv [160, 256, 1, 1, None, 1, 1, False]
6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
7 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
8 -1 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1]
9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
10 2 1 20992 ultralytics.nn.modules.conv.Conv [80, 256, 1, 1, None, 1, 1, False]
11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
12 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
13 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2]
14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
15 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
16 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2]
17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
18 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
19 [16, 19, 22] 1 4215984 ultralytics.nn.modules.head.RTDETRDecoder [80, [512, 512, 512], 256, 300, 4, 8, 3]
InvertedResidualsBlock输入形状: torch.Size([2, 512, 40, 40])
InvertedResidualsBlock输入形状: torch.Size([1, 512, 40, 40])
The size of tensor a (512) must match the size of tensor b (256) at non-singleton dimension 1
rtdetr-fasternet summary: 424 layers, 38721620 parameters, 38721620 gradients
New https://pypi.org/project/ultralytics/8.3.190 available 😃 Update with 'pip install -U ultralytics'
Ultralytics YOLOv8.0.201 🚀 Python-3.10.18 torch-2.2.2 CUDA:0 (NVIDIA A800 80GB PCIe, 81051MiB)
engine/trainer: task=detect, mode=train, model=/202408540022/rt_copy/RTDETR-main/ultralytics/cfg/models/rt-detr/rtdetr-fasternet.yaml, data=/202408540022/rt_copy/RTDETR-main/dataset/tomato/tomato/tomato.yaml, epochs=300, patience=0, batch=8, imgsz=640, save=True, save_period=-1, cache=False, device=0, workers=8, project=/202408540022/rt_copy/RTDETR-main/runs/train, name=InvertedResidual7, exist_ok=False, pretrained=True, optimizer=AdamW, verbose=True, seed=0, deterministic=True, single_cls=False, rect=False, cos_lr=False, close_mosaic=0, resume=False, amp=False, fraction=1.0, profile=False, freeze=None, overlap_mask=True, mask_ratio=4, dropout=0.0, val=True, split=val, save_json=False, save_hybrid=False, conf=None, iou=0.7, max_det=300, half=False, dnn=False, plots=True, source=None, show=False, save_txt=False, save_conf=False, save_crop=False, show_labels=True, show_conf=True, vid_stride=1, stream_buffer=False, line_width=None, visualize=False, augment=False, agnostic_nms=False, classes=None, retina_masks=False, boxes=True, format=torchscript, keras=False, optimize=False, int8=False, dynamic=False, simplify=False, opset=None, workspace=4, nms=False, lr0=0.0001, lrf=1.0, momentum=0.9, weight_decay=0.0001, warmup_epochs=2000, warmup_momentum=0.8, warmup_bias_lr=0.1, box=7.5, cls=0.5, dfl=1.5, pose=12.0, kobj=1.0, label_smoothing=0.0, nbs=64, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=0.0, mixup=0.0, copy_paste=0.0, cfg=None, tracker=botsort.yaml, save_dir=/202408540022/rt_copy/RTDETR-main/runs/train/InvertedResidual7
Overriding model.yaml nc=80 with nc=6
WARNING ⚠️ no model scale passed. Assuming scale='l'.
from n params module arguments
0 -1 1 2216100 fasternet_t0 []
1 -1 1 82432 ultralytics.nn.modules.conv.Conv [320, 256, 1, 1, None, 1, 1, False]
2 -1 1 789760 ultralytics.nn.modules.transformer.AIFI [256, 1024, 8]
3 -1 1 66048 ultralytics.nn.modules.conv.Conv [256, 256, 1, 1]
4 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
5 3 1 41472 ultralytics.nn.modules.conv.Conv [160, 256, 1, 1, None, 1, 1, False]
6 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
7 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
8 -1 1 131584 ultralytics.nn.modules.conv.Conv [512, 256, 1, 1]
9 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
10 2 1 20992 ultralytics.nn.modules.conv.Conv [80, 256, 1, 1, None, 1, 1, False]
11 [-2, -1] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
12 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
13 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2]
14 [-1, 12] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
15 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
16 -1 1 1180160 ultralytics.nn.modules.conv.Conv [512, 256, 3, 2]
17 [-1, 7] 1 0 ultralytics.nn.modules.conv.Concat [1]
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
InvertedResidualsBlock初始化: c1=512, c2=256
18 -1 3 7199232 ultralytics.nn.modules.inv_bottleneck1.InvertedResidualsBlock[512, 256, 6, 1]
19 [16, 19, 22] 1 4120968 ultralytics.nn.modules.head.RTDETRDecoder [6, [512, 512, 512], 256, 300, 4, 8, 3]
InvertedResidualsBlock输入形状: torch.Size([2, 512, 40, 40])
InvertedResidualsBlock输入形状: torch.Size([1, 512, 40, 40])
The size of tensor a (512) must match the size of tensor b (256) at non-singleton dimension 1
rtdetr-fasternet summary: 424 layers, 38626604 parameters, 38626604 gradients
train: Scanning /202408540022/RTDETR-main/RTDETR-main/dataset/tomato/tomato/labels/train.cache... 10057 images, 74 backgrounds, 0 co
train: WARNING ⚠️ /202408540022/RTDETR-main/RTDETR-main/dataset/tomato/tomato/images/train/IMG20220323085218.jpg: 1 duplicate labels removed
albumentations: Blur(p=0.01, blur_limit=(3, 7)), MedianBlur(p=0.01, blur_limit=(3, 7)), ToGray(p=0.01), CLAHE(p=0.01, clip_limit=(1, 4.0), tile_grid_size=(8, 8))
val: Scanning /202408540022/RTDETR-main/RTDETR-main/dataset/tomato/tomato/labels/val.cache... 1437 images, 9 backgrounds, 0 corrupt:
val: WARNING ⚠️ /202408540022/RTDETR-main/RTDETR-main/dataset/tomato/tomato/images/val/IMG20220323085218_aug2.jpg: 1 duplicate labels removed
Plotting labels to /202408540022/rt_copy/RTDETR-main/runs/train/InvertedResidual7/labels.jpg...
optimizer: AdamW(lr=0.0001, momentum=0.9) with parameter groups 79 weight(decay=0.0), 137 weight(decay=0.0001), 126 bias(decay=0.0)
Image sizes 640 train, 640 val
Using 8 dataloader workers
Logging results to /202408540022/rt_copy/RTDETR-main/runs/train/InvertedResidual7
Starting training for 300 epochs...
Epoch GPU_mem giou_loss cls_loss l1_loss Instances Size
0%| | 0/1258 [00:00<?, ?it/s]InvertedResidualsBlock输入形状: torch.Size([8, 512, 40, 40])
0%| | 0/1258 [00:02<?, ?it/s]
Traceback (most recent call last):
File "/202408540022/rt_copy/RTDETR-main/train.py", line 20, in <module>
model.train(data='/202408540022/rt_copy/RTDETR-main/dataset/tomato/tomato/tomato.yaml',
File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/model.py", line 342, in train
self.trainer.train()
File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/trainer.py", line 192, in train
self._do_train(world_size)
File "/202408540022/rt_copy/RTDETR-main/ultralytics/engine/trainer.py", line 345, in _do_train
self.loss, self.loss_items = self.model(batch)
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/202408540022/rt_copy/RTDETR-main/ultralytics/nn/tasks.py", line 58, in forward
return self.loss(x, *args, **kwargs)
File "/202408540022/rt_copy/RTDETR-main/ultralytics/nn/tasks.py", line 474, in loss
preds = self.predict(img, batch=targets) if preds is None else preds
File "/202408540022/rt_copy/RTDETR-main/ultralytics/nn/tasks.py", line 528, in predict
x = m(x) # run
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/container.py", line 217, in forward
input = module(input)
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1511, in _wrapped_call_impl
return self._call_impl(*args, **kwargs)
File "/root/anaconda3/envs/rt/lib/python3.10/site-packages/torch/nn/modules/module.py", line 1520, in _call_impl
return forward_call(*args, **kwargs)
File "/202408540022/rt_copy/RTDETR-main/ultralytics/nn/modules/inv_bottleneck1.py", line 50, in forward
result = identity + out
RuntimeError: The size of tensor a (512) must match the size of tensor b (256) at non-singleton dimension 1怎么修改倒置瓶颈模块的代码
最新发布