Enumerating All Modules For a Process

本文提供了一个使用C++编写的示例代码,展示了如何通过枚举系统中每个进程的模块来确定加载了特定DLL的进程。代码利用了Windows API函数如`EnumProcessModules`和`GetModuleFileNameEx`。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

To determine which processes have loaded a particular DLL, you must enumerate the modules for each process. The following sample code uses the EnumProcessModules function to enumerate the modules of current processes in the system.

 

#include <windows.h>
#include <tchar.h>
#include <stdio.h>
#include <psapi.h>

void PrintModules( DWORD processID )
{
    HMODULE hMods[1024];
    HANDLE hProcess;
    DWORD cbNeeded;
    unsigned int i;

    // Print the process identifier.

    printf( "/nProcess ID: %u/n", processID );

    // Get a list of all the modules in this process.

    hProcess = OpenProcess( PROCESS_QUERY_INFORMATION |
                            PROCESS_VM_READ,
                            FALSE, processID );
    if (NULL == hProcess)
        return;

    if( EnumProcessModules(hProcess, hMods, sizeof(hMods), &cbNeeded))
    {
        for ( i = 0; i < (cbNeeded / sizeof(HMODULE)); i++ )
        {
            TCHAR szModName[MAX_PATH];

            // Get the full path to the module's file.

            if ( GetModuleFileNameEx(hProcess, hMods[i], szModName,
                                     sizeof(szModName)/sizeof(TCHAR)))
            {
                // Print the module name and handle value.

                _tprintf(TEXT("/t%s (0x%08X)/n"),
                         szModName, hMods[i]);
            }
        }
    }

    CloseHandle( hProcess );
}

void main( )
{
    // Get the list of process identifiers.

    DWORD aProcesses[1024], cbNeeded, cProcesses;
    unsigned int i;

    if ( !EnumProcesses( aProcesses, sizeof(aProcesses), &cbNeeded ) )
        return;

    // Calculate how many process identifiers were returned.

    cProcesses = cbNeeded / sizeof(DWORD);

    // Print the name of the modules for each process.

    for ( i = 0; i < cProcesses; i++ )
        PrintModules( aProcesses[i] );
}

 

 The main function obtains a list of processes by using the EnumProcesses function. For each process, the main function calls the PrintModules function, passing it the process identifier. PrintModules in turn calls the OpenProcess function to obtain the process handle. If OpenProcess fails, the output shows only the process identifier. For example, OpenProcess fails for the Idle and CSRSS processes because their access restrictions prevent user-level code from opening them. Next, PrintModules calls the EnumProcessModules function to obtain the module handles function. Finally, PrintModules calls the GetModuleFileNameEx function, once for each module, to obtain the module names 

### Motif Counting Algorithm Implementation and Explanation Motifs are recurrent and statistically significant subgraph patterns within larger graphs, which play a crucial role in understanding the structural properties of complex networks. The process of identifying these motifs is known as motif counting. #### Definition of Motif Counting In graph theory, motif counting refers to enumerating occurrences of specific small connected induced subgraphs (motifs) within a large network. This technique helps uncover hidden structures that might not be apparent through traditional analysis methods[^1]. #### Importance in Network Analysis The significance of this approach lies in its ability to reveal functional modules or communities present inside biological, social, information, and technological systems represented by graphs. By analyzing such recurring configurations, researchers can gain insights into how different parts interact with each other at both local and global levels. #### Basic Principles Behind Implementations Implementing an efficient algorithm for detecting all instances of given motifs involves several key considerations: - **Subgraph Isomorphism Problem**: At heart, finding motifs requires solving multiple instances of the NP-complete problem called Subgraph Isomorphism. - **Efficiency Considerations**: Given computational complexity challenges associated with exact solutions, heuristic approaches often provide practical alternatives when dealing with very large datasets. - **Algorithmic Strategies**: - Exact Enumeration: Exhaustively searches every possible combination but becomes impractical beyond certain sizes due to exponential growth in required operations count. - Sampling Methods: Randomly samples subsets from input data while ensuring statistical representativeness; useful for estimating frequencies without full enumeration. - Index-Based Techniques: Preprocesses original graph structure creating auxiliary indices allowing faster lookups during query time. #### Example Code Snippet Using NetworkX Library in Python For demonstration purposes, here's a simple example using `networkx` library in Python to perform basic motif detection on undirected graphs: ```python import networkx as nx from itertools import combinations def find_motifs(G, size=3): """Finds all unique non-isomorphic motifs up to specified node count.""" nodes = list(G.nodes()) potential_motifs = set() # Generate candidate sets based on chosen motif size candidates = [set(c) for c in combinations(nodes, r=size)] for cand_set in candidates: H = G.subgraph(cand_set).copy() edges = sorted(H.edges()) # Convert edge tuples into string representation for hashing signature = ''.join([f"{min(u,v)}-{max(u,v)}," for u,v in edges]) if not any(nx.is_isomorphic(H, nx.from_edgelist(eval(f'[{s[:-1]}]'))) for s in potential_motifs): potential_motifs.add(signature) return [nx.from_edgelist(eval(f"[{m[:-1]}]")) for m in potential_motifs] # Create sample graph sample_graph = nx.Graph([(0,1),(1,2),(2,0),(2,3)]) # Find distinct motifs consisting exactly three vertices found_motifs = find_motifs(sample_graph, size=3) for i,m in enumerate(found_motifs,start=1): print(f"Found Motif {i}:") print(list(m.edges())) ``` This script defines a function named `find_motifs`, which takes an undirected graph object along with optional parameter specifying desired motif cardinality. It returns a collection containing only those found whose topological arrangement cannot be transformed one-to-one onto another via relabeling alone – effectively filtering out duplicates arising merely because they appear differently labeled yet structurally identical elsewhere throughout examined topology.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值