Given a non-empty 2D matrix matrix and an integer k, find the max sum of a rectangle in the matrix such that its sum is no larger than k.
Example:
Input: matrix = [[1,0,1],[0,-2,3]], k = 2
Output: 2
Explanation: Because the sum of rectangle [[0, 1], [-2, 3]] is 2,
and 2 is the max number no larger than k (k = 2).
Note:
- The rectangle inside the matrix must have an area > 0.
- What if the number of rows is much larger than the number of columns
先占个坑,等我有空来写注释
class Solution {
public:
int maxSumSubmatrix(vector<vector<int>>& matrix, int k)
{
int rowl = matrix.size(); //整个矩阵的行数
int coll = matrix[0].size();//整个矩阵的列数
int curmax;//curmax指的是ij列所有和小于K值的长方形的最大值
int ans = INT_MIN;//ans指的是整个矩阵所有小于k值的长方形的最大值
for(int i=0;i<coll;i++)
{
vector<int> sum(rowl,0);//记录ij列的每一行的和
for(int j=i;j<coll;j++)
{
int cursum=0;//cursum指的是ij列(0,row)组成的长方形的和
curmax = INT_MIN;
set<int> st;//存放所有cursum值的集合
st.insert(0);
set<int>::iterator it;
for(int row=0;row<rowl;row++)
{
sum[row] += matrix[row][j];
cursum += sum[row];
it = st.lower_bound(cursum-k);
if(it != st.end())
curmax = max(curmax,cursum-*it);
st.insert(cursum);
}
ans = max(ans,curmax);
}
}
return ans;
}
};
本文介绍了一种寻找矩阵中不超过给定整数k的最大矩形和的算法。通过遍历矩阵的所有可能列组合,并使用集合维护当前行和,实现高效求解。示例输入为矩阵[[1,0,1],[0,-2,3]]与k=2,输出最大矩形和为2。
319

被折叠的 条评论
为什么被折叠?



