如何通过Python SDK向Collection中插入或更新Doc

本文介绍如何通过Python SDK向Collection中插入或更新Doc。

说明

  1. 若调用本接口时Doc Id已存在,则等同于更新Doc;
    Doc Id不存在,则等同于插入Doc。

  2. 若调用本接口时不指定Doc Id,则等同于插入Doc,DashVector会自动生成Doc Id,并在返回结果中携带id信息。

前提条件

  • 已创建Cluster
  • 已获得API-KEY
  • 已安装最新版SDK

接口定义

Python示例:

/* by 01022.hk - online tools website : 01022.hk/zh/formathtml.html */
Collection.upsert(
    docs: Union[Doc, List[Doc], Tuple, List[Tuple]],
    partition: Optional[str] = None,
    async_req: False
) -> DashVectorResponse

使用示例

说明

  1. 需要使用您的api-key替换示例中的YOUR_API_KEY、您的Cluster Endpoint替换示例中的YOUR_CLUSTER_ENDPOINT,代码才能正常运行。

  2. 本示例需要参考新建Collection-使用示例提前创建好名称为quickstart的Collection。

Python示例:

/* by 01022.hk - online tools website : 01022.hk/zh/formathtml.html */
import dashvector
from dashvector import Doc
import numpy as np

client = dashvector.Client(
    api_key='YOUR_API_KEY',
    endpoint='YOUR_CLUSTER_ENDPOINT'
)
collection = client.get(name='quickstart')

插入或更新Doc

Python示例:

# 通过Doc对象upsert
ret = collection.upsert(
    Doc(
        id='1',
        vector=[0.1, 0.2, 0.3, 0.4]
    )
)
# 判断upsert是否成功
assert ret

# 简化形式:通过Tuple upsert
ret = collection.upsert(
    ('2', [0.1, 0.1, 0.1, 0.1])               # (id, vector)
)

插入或更新不带有Id的Doc

Python

# 通过Doc对象upsert
ret = collection.upsert(
    Doc(vector=[0.1, 0.2, 0.3, 0.4])
)
# 简化形式:通过Tuple upsert
ret = collection.upsert(
    ([0.1, 0.1, 0.1, 0.1],)          
)

插入或更新带有Fields的Doc

Python示例:

# upsert单条数据,并设置Fields Value
ret = collection.upsert(
    Doc(
        id='3',
        vector=np.random.rand(4),
        fields={
            # 设置创建Collection时预定义的Fileds Value
            # name:str, weight:float, age:int, id:long
            'name': 'zhangsan', 'weight':70.0, 'age':30, 'id':1234567890,
            # 设置Schema-Free的Field & Value
            'anykey1': 'str-value', 'anykey2': 1,
            'anykey3': True, 'anykey4': 3.1415926
        }
    )
)

# upsert单条数据,并设置Fields Value
ret = collection.upsert(
    ('4', np.random.rand(4), {'foo': 'bar'})  # (id, vector, fields)
)

批量插入或更新Doc

Python示例:

# 通过Doc对象,批量upsert 10条数据
ret = collection.upsert(
    [
        Doc(id=str(i+5), vector=np.random.rand(4)) for i in range(10)
    ]
)

# 简化形式:通过Tuple,批量upsert 3条数据
ret = collection.upsert(
    [
        ('15', [0.2,0.7,0.8,1.3], {'age': 20}),
        ('16', [0.3,0.6,0.9,1.2], {'age': 30}),
        ('17', [0.4,0.5,1.0,1.1], {'age': 40})
    ]                                         # List[(id, vector, fields)]
)

# 判断批量upsert是否成功
assert ret

异步插入或更新Doc

Python示例:

# 异步批量upsert 10条数据
ret_funture = collection.upsert(
    [
        Doc(id=str(i+18), vector=np.random.rand(4), fields={'name': 'foo' + str(i)}) for i in range(10)
    ],
    async_req=True
)
# 等待并获取异步upsert结果
ret = ret_funture.get()

插入或更新带有Sparse Vector的Doc

Python示例:

ret = collection.upsert(
    Doc(
        id='28',
        vector=[0.1, 0.2, 0.3, 0.4],
        sparse_vector={1:0.4, 10000:0.6, 222222:0.8}
    )
)
基于径向基函数神经网络RBFNN的自适应滑模控制学习(Matlab代码实现)内容概要:本文介绍了基于径向基函数神经网络(RBFNN)的自适应滑模控制方法,并提供了相应的Matlab代码实现。该方法结合了RBF神经网络的非线性逼近能力和滑模控制的强鲁棒性,用于解决复杂系统的控制问题,尤其适用于存在不确定性和外部干扰的动态系统。文中详细阐述了控制算法的设计思路、RBFNN的结构与权重更新机制、滑模面的构建以及自适应律的推导过程,并通过Matlab仿真验证了所提方法的有效性和稳定性。此外,文档还列举了大量相关的科研方向和技术应用,涵盖智能优化算法、机器学习、电力系统、路径规划等多个领域,展示了该技术的广泛应用前景。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的研究生、科研人员及工程技术人员,特别是从事智能控制、非线性系统控制及相关领域的研究人员; 使用场景及目标:①学习和掌握RBF神经网络与滑模控制相结合的自适应控制策略设计方法;②应用于电机控制、机器人轨迹跟踪、电力电子系统等存在模型不确定性外界扰动的实际控制系统中,提升控制精度与鲁棒性; 阅读建议:建议读者结合提供的Matlab代码进行仿真实践,深入理解算法实现细节,同时可参考文中提及的相关技术方向拓展研究思路,注重理论分析与仿真验证相结合。
先展示下效果 https://pan.quark.cn/s/a4b39357ea24 本项目是本人参加BAT等其他公司电话、现场面试之后总结出来的针对Java面试的知识点真题,每个点题目都是在面试中被问过的。 除开知识点,一定要准备好以下套路: 个人介绍,需要准备一个1分钟的介绍,包括学习经历、工作经历、项目经历、个人优势、一句话总结。 一定要自己背得滚瓜烂熟,张口就来 抽象概念,当面试官问你是如何理解多线程的时候,你要知道从定义、来源、实现、问题、优化、应用方面系统性地回答 项目强化,至少与知识点的比例是五五开,所以必须针对简历中的两个以上的项目,形成包括【架构和实现细节】,【正常流程和异常流程的处理】,【难点+坑+复盘优化】三位一体的组合拳 压力练习,面试的时候难免紧张,可能会严重影响发挥,通过平时多找机会参与交流分享,找人做压力面试来改善 表达练习,表达能力非常影响在面试中的表现,能否简练地将答案告诉面试官,可以通过给自己讲解的方式刻意练习 重点针对,面试官会针对简历提问,所以请针对简历上写的所有技术点进行重点准备 Java基础 JVM原理 集合 多线程 IO 问题排查 Web框架、数据库 Spring MySQL Redis 通用基础 操作系统 网络通信协议 排序算法 常用设计模式 从URL到看到网页的过程 分布式 CAP理论 锁 事务 消息队列 协调器 ID生成方式 一致性hash 限流 微服务 微服务介绍 服务发现 API网关 服务容错保护 服务配置中心 算法 数组-快速排序-第k大个数 数组-对撞指针-最大蓄水 数组-滑动窗口-最小连续子数组 数组-归并排序-合并有序数组 数组-顺时针打印矩形 数组-24点游戏 链表-链表反转-链表相加 链表-...
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值