埋 点


1.数据过程:
数据生产-数据采集-数据处理-数据分析和挖掘-数据驱动/用户反馈-产品优化/迭代。

用户操作app时产生行为数据,通过数据采集系统采集,对采集的数据进行处理(实时数据处理+离线数据处理)得到统计数据进行数据分析,并将结果呈现出来以复盘总结当前版本并驱动下一个产品迭代,或者清洗后的数据进行数据挖掘,实时反馈给用户(如推荐)。

数据采集,顾名思义采集相应的数据,是整个数据流的起点,采集的全不全、对不对,直接决定数据广度和质量,影响后续所有的环节。

在数据采集失效性、完整性不好的公司,经常会有业务方发现数据发生的大幅度变化,追其所以时发现是数据采集的问题(见附注)。而另一方面,采集什么数据才能有效的得到数据分析结论,才能有效的进行推荐,就需要提前规划埋点。

2.数据埋点:
所谓“埋点”,是数据采集领域(尤其是用户行为数据采集领域)的术语,指的是针对特定用户行为或事件进行捕获、处理和发送的相关技术及其实施过程。比如用户某个icon点击次数、观看某个视频的时长等等。

埋点的技术实质,是先监听软件应用运行过程中的事件,当需要关注的事件发生时进行判断和捕获。

特别注意需要明确事件发生时间点、判别条件,这里如果遇到不清楚的,需要和开发沟通清楚,避免采集数据与理想存在差异。例如:期望采集某个app的某个广告的有效曝光数,有效曝光的判别条件是停留时长超过1秒且有效加载出广告内容。

现在公司通常都会有数据产品经理或业务线数据分析师,结合版本迭代过程进行埋点规划。如果是代码埋点,还需要开发完成相应的埋点代码。

埋点是目的导向。

在产品规划时就要思考数据埋点问题,如果在产品外发后再考虑怎么埋点,就会导致前期版本用户的数据无法收集,想要看某个数据时就会非常无奈,只有等到新版本完善来弥补。

思考要埋哪些点、埋点的形式,需要紧密结合产品迭代的方向、运营需求,并和数据开发等进行充分沟通以确认

通常的沟通过程以 埋点文档为载体;数据埋点评审为终结。

3. 埋点技术:代码埋点、可视化埋点、无埋点
(1)代码埋点

以为需要监测网站上/app上用户的行为,是需要在网页/app中加上一些代码的,当用户触发相应行为时,进行数据上报,也就是代码埋点。这样的代码,在网站上叫监测代码,在app中叫SDK(Software Development Kit)。市场上的第三方数据采集均支持代码埋点,GA, GrowingIO,神策等。

(2)可视化埋点

利用可视化交互手段,数据产品/数据分析师可以通过可视化界面(管理后台连接设备) 配置事件,如下是腾讯移动分析的可视化埋点界面。可视化埋点仍需要先配置相关事件,再采集。

(3)无埋点

无埋点是指开发人员集成采集 SDK 后,SDK 便直接开始捕捉和监测用户在应用里的所有行为,并全部上报,不需要开发人员添加额外代码。

数据分析师/数据产品 通过管理后台的圈选功能来选出自己关注的用户行为,并给出事件命名。之后就可以结合时间属性、用户属性、事件进行分析了。所以无埋点并不是真的不用埋点了。


无埋点和可视化埋点均不需要开发支持,仅数据业务同学进行设置即可。但两者数据上报-埋点设置存在加大的差异:无埋点支持在数据上报之后再进行埋点设置,因而数据采集/上报的量远大于可视化埋点.

因而无埋点的数据大都有清空机制,例如growingIO,允许版本发布后7天内设置埋点,超过7天数据清空,无法追溯。


客户端埋点 / 服务端埋点


====
kit:

n.	配套元件; 成套工具; 成套设备; 全套衣服及装备;
v.	装备;







评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值