[笔记]Writing your first Django app

本文介绍如何使用Django框架快速创建项目和基本应用,包括项目初始化、数据库配置、视图函数实现、URL路由设置以及迁移操作。

https://docs.djangoproject.com/en/1.9/intro/


###SETUP:

$ django-admin startproject mysite
$ python manage.py runserver   /    $ python manage.py runserver 0.0.0.0:8000
$ python manage.py startapp polls


views.py:
def index(request):
    return HttpResponse("Hello, world. You're at the polls index.")


urls.py:
urlpatterns = [
    url(r'^polls/', include('polls.urls')),
    url(r'^admin/', admin.site.urls),
]


###DB: mysite/settings.py
DATABASES =    ENGINE , NAME




###MODELS: models.py
class Question(models.Model):
    question_text = models.CharField(max_length=200)
    pub_date = models.DateTimeField('date published')
class Choice(models.Model):
    question = models.ForeignKey(Question, on_delete=models.CASCADE)
    choice_text = models.CharField(max_length=200)
    votes = models.IntegerField(default=0)


###MIGRATIONS:mysite/settings.py
INSTALLED_APPS = [
    'polls.apps.PollsConfig', ….


$ python manage.py makemigrations polls
$ python manage.py sqlmigrate polls 0001
$ python manage.py migrate




###ADMIN:
$ python manage.py createsuperuser



内容概要:本文介绍了一个基于冠豪猪优化算法(CPO)的无人机三维路径规划项目,利用Python实现了在复杂三维环境中为无人机规划安全、高效、低能耗飞行路径的完整解决方案。项目涵盖空间环境建模、无人机动力学约束、路径编码、多目标代价函数设计以及CPO算法的核心实现。通过体素网格建模、动态障碍物处理、路径平滑技术和多约束融合机制,系统能够在高维、密集障碍环境下快速搜索出满足飞行可行性、安全性与能效最优的路径,并支持在线重规划以适应动态环境变化。文中还提供了关键模块的代码示例,包括环境建模、路径评估和CPO优化流程。; 适合人群:具备一定Python编程基础和优化算法基础知识,从事无人机、智能机器人、路径规划或智能优化算法研究的相关科研人员与工程技术人员,尤其适合研究生及有一定工作经验的研发工程师。; 使用场景及目标:①应用于复杂三维环境下的无人机自主导航与避障;②研究智能优化算法(如CPO)在路径规划中的实际部署与性能优化;③实现多目标(路径最短、能耗最低、安全性最高)耦合条件下的工程化路径求解;④构建可扩展的智能无人系统决策框架。; 阅读建议:建议结合文中模型架构与代码示例进行实践运行,重点关注目标函数设计、CPO算法改进策略与约束处理机制,宜在仿真环境中测试不同场景以深入理解算法行为与系统鲁棒性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值