- 🍨 本文为🔗365天深度学习训练营中的学习记录博客
- 🍖 原作者:K同学啊 | 接辅导、项目定制
- 🚀 文章来源:K同学的学习圈子
目录
一、代码及运行结果
1.前期准备
import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision
from torchvision import transforms, datasets
import os,PIL,pathlib
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(device)
import os,PIL,random,pathlib
data_dir = './猴痘病识别/'
data_dir = pathlib.Path(data_dir)
data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("/")[1] for path in data_paths]
print(classeNames)
total_datadir = './猴痘病识别/'
# 关于transforms.Compose的更多介绍可以参考:https://blog.youkuaiyun.com/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
transforms.Resize([224, 224]), # 将输入图片resize成统一尺寸
transforms.ToTensor(), # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
transforms.Normalize( # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]) # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])
total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
print(total_data)
print(total_data.class_to_idx)
train_size = int(0.8 * len(total_data))
test_size = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
batch_size = 32
train_dl = torch.utils.data.DataLoader(train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
test_dl = torch.utils.data.DataLoader(test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=1)
for X, y in test_dl:
print("Shape of X [N, C, H, W]: ", X.shape)
print("Shape of y: ", y.shape, y.dtype)
break
cuda ['Monkeypox', 'Others'] Dataset ImageFolder Number of datapoints: 2142 Root location: ./猴痘病识别/ StandardTransform Transform: Compose( Resize(size=[224, 224], interpolation=bilinear) ToTensor() Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) ) {'Monkeypox': 0, 'Others': 1} Shape of X [N, C, H, W]: torch.Size([32, 3, 224, 224]) Shape of y: torch.Size([32]) torch.int64
2.构建简单的CNN网络
import torch.nn.functional as F
class Network_bn(nn.Module):
def __init__(self):
super(Network_bn, self).__init__()
"""
nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)是步长,默认为1
第五个参数(padding)是填充大小,默认为0
"""
self.conv1 = nn.Conv2d(in_channels=3, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn1 = nn.BatchNorm2d(12)
self.conv2 = nn.Conv2d(in_channels=12, out_channels=12, kernel_size=5, stride=1, padding=0)
self.bn2 = nn.BatchNorm2d(12)
self.pool = nn.MaxPool2d(2,2)
self.conv4 = nn.Conv2d(in_channels=12, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn4 = nn.BatchNorm2d(24)
self.conv5 = nn.Conv2d(in_channels=24, out_channels=24, kernel_size=5, stride=1, padding=0)
self.bn5 = nn.BatchNorm2d(24)
self.fc1 = nn.Linear(24*50*50, len(classeNames))
def forward(self, x):
x = F.relu(self.bn1(self.conv1(x)))
x = F.relu(self.bn2(self.conv2(x)))
x = self.pool(x)
x = F.relu(self.bn4(self.conv4(x)))
x = F.relu(self.bn5(self.conv5(x)))
x = self.pool(x)
x = x.view(-1, 24*50*50)
x = self.fc1(x)
return x
device = "cuda" if torch.cuda.is_available() else "cpu"
print("Using {} device".format(device))
model = Network_bn().to(device)
print(model)
Using cuda device Network_bn( (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1)) (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1)) (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False) (conv4): Conv2d(12, 24, kernel_size=(5, 5), stride=(1, 1)) (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1)) (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True) (fc1): Linear(in_features=60000, out_features=2, bias=True) )
3.训练模型
loss_fn = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt = torch.optim.SGD(model.parameters(),lr=learn_rate)
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
size = len(dataloader.dataset) # 训练集的大小,一共60000张图片
num_batches = len(dataloader) # 批次数目,1875(60000/32)
train_loss, train_acc = 0, 0 # 初始化训练损失和正确率
for X, y in dataloader: # 获取图片及其标签
X, y = X.to(device), y.to(device)
# 计算预测误差
pred = model(X) # 网络输出
loss = loss_fn(pred, y) # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
# 反向传播
optimizer.zero_grad() # grad属性归零
loss.backward() # 反向传播
optimizer.step() # 每一步自动更新
# 记录acc与loss
train_acc += (pred.argmax(1) == y).type(torch.float).sum().item()
train_loss += loss.item()
train_acc /= size
train_loss /= num_batches
return train_acc, train_loss
def test (dataloader, model, loss_fn):
size = len(dataloader.dataset) # 测试集的大小,一共10000张图片
num_batches = len(dataloader) # 批次数目,313(10000/32=312.5,向上取整)
test_loss, test_acc = 0, 0
# 当不进行训练时,停止梯度更新,节省计算内存消耗
with torch.no_grad():
for imgs, target in dataloader:
imgs, target = imgs.to(device), target.to(device)
# 计算loss
target_pred = model(imgs)
loss = loss_fn(target_pred, target)
test_loss += loss.item()
test_acc += (target_pred.argmax(1) == target).type(torch.float).sum().item()
test_acc /= size
test_loss /= num_batches
return test_acc, test_loss
epochs = 20
train_loss = []
train_acc = []
test_loss = []
test_acc = []
for epoch in range(epochs):
model.train()
epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
model.eval()
epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
train_acc.append(epoch_train_acc)
train_loss.append(epoch_train_loss)
test_acc.append(epoch_test_acc)
test_loss.append(epoch_test_loss)
template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')
Epoch: 1, Train_acc:58.6%, Train_loss:0.691, Test_acc:64.1%,Test_loss:0.665 Epoch: 2, Train_acc:66.7%, Train_loss:0.609, Test_acc:68.8%,Test_loss:0.646 Epoch: 3, Train_acc:70.6%, Train_loss:0.567, Test_acc:66.2%,Test_loss:0.656 Epoch: 4, Train_acc:73.3%, Train_loss:0.541, Test_acc:70.9%,Test_loss:0.630 Epoch: 5, Train_acc:77.3%, Train_loss:0.494, Test_acc:75.1%,Test_loss:0.568 Epoch: 6, Train_acc:79.5%, Train_loss:0.471, Test_acc:76.0%,Test_loss:0.556 Epoch: 7, Train_acc:79.6%, Train_loss:0.453, Test_acc:72.0%,Test_loss:0.568 Epoch: 8, Train_acc:81.8%, Train_loss:0.432, Test_acc:74.8%,Test_loss:0.525 Epoch: 9, Train_acc:83.4%, Train_loss:0.414, Test_acc:76.0%,Test_loss:0.503 Epoch:10, Train_acc:84.4%, Train_loss:0.396, Test_acc:77.4%,Test_loss:0.505 Epoch:11, Train_acc:85.1%, Train_loss:0.388, Test_acc:75.8%,Test_loss:0.513 Epoch:12, Train_acc:86.3%, Train_loss:0.364, Test_acc:79.0%,Test_loss:0.475 Epoch:13, Train_acc:87.6%, Train_loss:0.354, Test_acc:80.2%,Test_loss:0.476 Epoch:14, Train_acc:87.3%, Train_loss:0.347, Test_acc:80.4%,Test_loss:0.468 Epoch:15, Train_acc:87.8%, Train_loss:0.342, Test_acc:78.6%,Test_loss:0.473 Epoch:16, Train_acc:88.6%, Train_loss:0.327, Test_acc:81.6%,Test_loss:0.457 Epoch:17, Train_acc:89.2%, Train_loss:0.321, Test_acc:81.4%,Test_loss:0.464 Epoch:18, Train_acc:88.8%, Train_loss:0.312, Test_acc:80.0%,Test_loss:0.453 Epoch:19, Train_acc:90.2%, Train_loss:0.304, Test_acc:81.4%,Test_loss:0.458 Epoch:20, Train_acc:90.1%, Train_loss:0.299, Test_acc:80.7%,Test_loss:0.434 Done
4.结果可视化
import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore") #忽略警告信息
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 #分辨率
epochs_range = range(epochs)
plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()
from PIL import Image
classes = list(total_data.class_to_idx)
def predict_one_image(image_path, model, transform, classes):
test_img = Image.open(image_path).convert('RGB')
# plt.imshow(test_img) # 展示预测的图片
test_img = transform(test_img)
img = test_img.to(device).unsqueeze(0)
model.eval()
output = model(img)
_,pred = torch.max(output,1)
pred_class = classes[pred]
print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./猴痘病识别/Monkeypox/M01_01_00.jpg',
model=model,
transform=train_transforms,
classes=classes)
预测结果是:Monkeypox
5.保存并加载模型
# 模型保存
PATH = './model.pth' # 保存的参数文件名
torch.save(model.state_dict(), PATH)
# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))
<All keys matched successfully>
二、个人总结
对保存模型的总结:
当保存和加载模型时,TensorFlow和PyTorch使用了不同的函数和机制。下面是对ModelCheckpoint
、model.save()
以及torch.save(model.state_dict(), PATH)
函数的详细解释和区别:
-
TensorFlow中的
model.save()
函数:- 功能:
model.save()
函数用于保存整个模型,包括模型的架构和权重参数。 - 格式:默认情况下,TensorFlow将模型保存为SavedModel格式,它是一个包含模型架构、权重参数和计算图的文件夹。
- 使用方式:可以通过
model.save(filepath)
来保存模型,其中filepath
是保存模型的文件路径。
- 功能:
-
PyTorch中的
torch.save(model.state_dict(), PATH)
函数:- 功能:
torch.save()
函数用于保存模型的状态字典(state_dict),即模型的权重参数。 - 格式:PyTorch使用Python的pickle模块将状态字典保存为文件。
- 使用方式:可以通过
torch.save(model.state_dict(), PATH)
来保存模型的状态字典,其中model.state_dict()
获取模型的状态字典,PATH
是保存模型的文件路径。
- 功能:
-
TensorFlow中的
ModelCheckpoint
回调函数:- 功能:
ModelCheckpoint
是一个TensorFlow的回调函数,用于在训练过程中定期保存模型的权重参数。 - 格式:与
model.save()
函数类似,默认情况下,它会将模型保存为SavedModel格式。 - 使用方式:可以通过在训练过程中指定
ModelCheckpoint
回调函数来自动保存模型。 通过设置save_weights_only=True
,可以仅保存模型的权重参数而不保存整个模型。
- 功能: