keras速度复习-模型存读

本文介绍了一个使用Keras框架的SimpleRNN模型对MNIST数据集进行手写数字识别的案例。模型加载预训练权重,评估了在测试集和训练集上的性能,实现了高精度的分类效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

import numpy as np
from keras.datasets import mnist
from keras.utils import np_utils
from keras.models import Sequential
from keras.layers import Dense
from keras.layers.recurrent import SimpleRNN
from keras.optimizers import Adam
from keras.models import load_model#加入新包

#数据长度-一行有28个像素
input_size=28
#序列长度-一共有28行
time_steps=28
#隐藏层cell个数
cell_size=50
#载入数据
(x_train,y_train),(x_test,y_test)=mnist.load_data()
#打印知形状是(60000,28,28),如果是(60000,784)就要先展开
x_train=x_train/255.0#shape0就是60000,-1自动计算28*28
x_test=x_test/255.0
#换one hot格式:把输出训练成10个类
y_train=np_utils.to_categorical(y_train,num_classes=10)
y_test=np_utils.to_categorical(y_test,num_classes=10)

#载入模型
model=load_model('model.h5')
#模型定义,优化器定义,开始运行,都可以省略
#当然可以继续追加训练:model.fit(...)

#评估模型
loss,accuracy=model.evaluate(x_test,y_test)
print('\ntest loss',loss)
print('accuracy',accuracy)

loss,accuracy=model.evaluate(x_train,y_train)
print('\ntest loss',loss)
print('accuracy',accuracy)

#最后加这一句就会在当前路径生成模型文件
model.save('model.h5')

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值