calculation for time balance property, formula, two pass

本文探讨了Churn率计算公式及在不同时间段的应用变化。针对Margin%和Churn指标的时间平衡属性和两阶段计算进行了详细解析,并通过案例说明如何确保计算结果准确。

say "Margin %" has  a formula: Margin % Sales, and both Qtr1 and "Margin %" are dynamic.

if only time balance property is set, say First, then Qtr1->"Margin %" is equal to jan->"Margin %",
formula is overritten by time balance property.

now if "two pass" is set, then Qtr1->"Margin %" will be re-calculated based on formula.

 

 

about "Churn" Story:

basical formula: Churn=Net_Deacts/Avg_Subs*-1

 

IF (@ISGEN("Period",4) OR (@ISMBR("JAN YTD") OR @ISMBR("JAN QTD"))) Net_Deacts/Avg_Subs * -1;ELSEIF (@ISGEN("Period",3) AND NOT (@ISCHILD(YTD) OR @ISCHILD(QTD))) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("Q1")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("Q2")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("Q3")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("Q4")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("FEB YTD")) (Net_Deacts/Avg_Subs * -1)/2;ELSEIF (@ISMBR("MAR YTD")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("APR YTD")) (Net_Deacts/Avg_Subs * -1)/4;ELSEIF (@ISMBR("MAY YTD")) (Net_Deacts/Avg_Subs * -1)/5;ELSEIF (@ISMBR("JUN YTD")) (Net_Deacts/Avg_Subs * -1)/6;ELSEIF (@ISMBR("JUL YTD")) (Net_Deacts/Avg_Subs * -1)/7;ELSEIF (@ISMBR("AUG YTD")) (Net_Deacts/Avg_Subs * -1)/8;ELSEIF (@ISMBR("SEP YTD")) (Net_Deacts/Avg_Subs * -1)/9;ELSEIF (@ISMBR("OCT YTD")) (Net_Deacts/Avg_Subs * -1)/10;ELSEIF (@ISMBR("NOV YTD")) (Net_Deacts/Avg_Subs * -1)/11;ELSEIF (@ISMBR("DEC YTD")) (Net_Deacts/Avg_Subs * -1)/12;ELSEIF (@ISMBR("FEB QTD")) (Net_Deacts/Avg_Subs * -1)/2;ELSEIF (@ISMBR("MAR QTD")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("APR QTD")) (Net_Deacts/Avg_Subs * -1)/1;ELSEIF (@ISMBR("MAY QTD")) (Net_Deacts/Avg_Subs * -1)/2;ELSEIF (@ISMBR("JUN QTD")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("JUL QTD")) (Net_Deacts/Avg_Subs * -1)/1;ELSEIF (@ISMBR("AUG QTD")) (Net_Deacts/Avg_Subs * -1)/2;ELSEIF (@ISMBR("SEP QTD")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("OCT QTD")) (Net_Deacts/Avg_Subs * -1)/1;ELSEIF (@ISMBR("NOV QTD")) (Net_Deacts/Avg_Subs * -1)/2;ELSEIF (@ISMBR("DEC QTD")) (Net_Deacts/Avg_Subs * -1)/3;ELSEIF (@ISMBR("1st Half Year")) (Net_Deacts/Avg_Subs * -1)/6;ELSEIF (@ISMBR("2nd Half Year")) (Net_Deacts/Avg_Subs * -1)/6;ELSEIF (@ISMBR("YearTotal")) (Net_Deacts/Avg_Subs * -1)/12;ELSE Net_Deacts/Avg_Subs * -1;ENDIF;

 

sinc e "None" can not be deployed, so i used Flow, which lead time balance property

to be none. this turn out "churn"->q1 is equal to sum of Jan, Feb, Mar. Why? since account member is calculated firstly and time secondly.

after change to "average" ( which is not helpful actually) and set to "two pass", get the

expected value: "Churn"->q1 formula is this: (Net_Deacts/Avg_Subs * -1)/3.

Net_Deacts->q1 is sum of 3 monthes: Net_Deacts->Jan+Net_Deacts->Feb+Net_Deacts->Mar

Avg_Subs->q1 is (Avg_Subs->Jan + Avg_Subs->Feb+Avg_Subs->Mar)/3

 

For Avg_Subs, it has "TB Average" and formula: (eop_subs+bop_subs) / 2:

for Jan, Feb, Mar,etc, it's equal to (eop_subs+bop_subs)/2 of each month; for Q1,

it's equal to (Avg_Subs->Jan + Avg_Subs->Feb+Avg_Subs->Mar)/3 since "TB Average" and no two pass

来自 “ ITPUB博客 ” ,链接:http://blog.itpub.net/8583032/viewspace-720766/,如需转载,请注明出处,否则将追究法律责任。

转载于:http://blog.itpub.net/8583032/viewspace-720766/

本课题设计了一种利用Matlab平台开发的植物叶片健康状态识别方案,重点融合了色彩与纹理双重特征以实现对叶片病害的自动化判别。该系统构建了直观的图形操作界面,便于用户提交叶片影像并快速获得分析结论。Matlab作为具备高效数值计算与数据处理能力的工具,在图像分析与模式分类领域应用广泛,本项目正是借助其功能解决农业病害监测的实际问题。 在色彩特征分析方面,叶片影像的颜色分布常与其生理状态密切相关。通常,健康的叶片呈现绿色,而出现黄化、褐变等异常色彩往往指示病害或虫害的发生。Matlab提供了一系列图像处理函数,例如可通过色彩空间转换与直方图统计来量化颜色属性。通过计算各颜色通道的统计参数(如均值、标准差及主成分等),能够提取具有判别力的色彩特征,从而为不同病害类别的区分提供依据。 纹理特征则用于描述叶片表面的微观结构与形态变化,如病斑、皱缩或裂纹等。Matlab中的灰度共生矩阵计算函数可用于提取对比度、均匀性、相关性等纹理指标。此外,局部二值模式与Gabor滤波等方法也能从多尺度刻画纹理细节,进一步增强病害识别的鲁棒性。 系统的人机交互界面基于Matlab的图形用户界面开发环境实现。用户可通过该界面上传待检图像,系统将自动执行图像预处理、特征抽取与分类判断。采用的分类模型包括支持向量机、决策树等机器学习方法,通过对已标注样本的训练,模型能够依据新图像的特征向量预测其所属的病害类别。 此类课题设计有助于深化对Matlab编程、图像处理技术与模式识别原理的理解。通过完整实现从特征提取到分类决策的流程,学生能够将理论知识与实际应用相结合,提升解决复杂工程问题的能力。总体而言,该叶片病害检测系统涵盖了图像分析、特征融合、分类算法及界面开发等多个技术环节,为学习与掌握基于Matlab的智能检测技术提供了综合性实践案例。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
### Two-Pass Raycasting Implementation and Usage in Computer Graphics In computer graphics, two-pass raycasting is a technique used to render volumetric data efficiently by dividing the rendering process into two distinct stages. This method enhances performance while maintaining visual quality. #### First Pass: Depth Calculation During the first pass, rays are cast from the camera through each pixel on the screen towards the volume dataset. For every ray, only depth information (the entry and exit points where the ray intersects with the bounding box of the volume) gets recorded without performing any shading calculations. The primary goal here is to determine which parts of the volume will be visible from that viewpoint[^2]. ```cpp for each pixel p { calculateRay(p); findEntryExitPoints(ray); } ``` #### Second Pass: Shading and Color Computation Once all necessary depths have been computed during the initial phase, these values serve as input parameters for executing more complex operations like texture sampling, lighting effects application, etc., within this second traversal over previously identified segments inside volumes. By doing so, it reduces redundant computations since non-visible regions do not require processing again until there's a change in viewing angle or other relevant factors affecting visibility[^1]. ```cpp foreach segment s between entries/exits found earlier{ sampleTexture(s); applyLightingEffects(); accumulateColorAndOpacity(); } ``` This approach leverages hardware acceleration capabilities effectively when implemented using GPU shaders because both passes can run concurrently across multiple threads handling different portions simultaneously leading up significant speed improvements compared traditional single-pass methods especially dealing large datasets such as medical imaging scans or scientific simulations involving dense clouds particles[^3].
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值