Social Recommendation with Missing Not at Random Data(ICDM 2018)参考文献

本文综述了社交网络中推荐系统的最新研究进展,涵盖了从矩阵分解到深度学习的各种算法,探讨了信任传播、社交影响力和社会关系在个性化推荐中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一部分 带图的文章链接:https://blog.youkuaiyun.com/ciecus_csdn/article/details/84454425

第二部分 算法以及实验部分链接:https://blog.youkuaiyun.com/ciecus_csdn/article/details/84454128

第三部分 参考文献:https://blog.youkuaiyun.com/ciecus_csdn/article/details/84480998

REFERENCES

  1. [1]  S.-H. Yang, B. Long, A. Smola, N. Sadagopan, Z. Zheng, and H. Zha, “Like like alike: joint friendship and interest propagation in social networks,” in Proceedings of the 20th international conference on World wide web. ACM, 2011, pp. 537–546.

  2. [2]  T. Zhao, J. McAuley, and I. King, “Leveraging social connections to improve personalized ranking for collaborative filtering,” in Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. ACM, 2014, pp. 261–270.

  3. [3]  G.Guo,J.Zhang,andN.Yorke-Smith,“Trustsvd:Collaborativefiltering with both the explicit and implicit influence of user trust and of item ratings,” in AAAI, 2015.

  4. [4]  B. M. Marlin and R. S. Zemel, “Collaborative prediction and ranking with non-random missing data,” in Proceedings of the third ACM conference on Recommender systems. ACM, 2009, pp. 5–12.

  5. [5]  B. M. Marlin, R. S. Zemel, S. Roweis, and M. Slaney, “Collaborative filtering and the missing at random assumption,” in UAI. AUAI Press, 2007, pp. 267–275.

  6. [6]  S. Ohsawa, Y. Obara, and T. Osogami, “Gated Probabilistic Matrix Factorization : Learning Users ’ Attention from Missing Values,” Ijcai, pp. 1888–1894, 2016.

  7. [7]  J.M.Herna ́ndez-Lobato,N.Houlsby,andZ.Ghahramani,“Probabilistic matrix factorization with non-random missing data.” in ICML, 2014, pp. 1512–1520.

  8. [8]  B. Pradel, N. Usunier, and P. Gallinari, “Ranking with non-random missing ratings: influence of popularity and positivity on evaluation metrics,” in Proceedings of the sixth ACM conference on Recommender systems. ACM, 2012, pp. 147–154.

  9. [9]  Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for recommender systems,” Computer, vol. 42, no. 8, 2009.

  10. [10]  A. Mnih and R. R. Salakhutdinov, “Probabilistic matrix factorization,” in NIPS, 2008, pp. 1257–1264.

  11. [11]  H. Ma, D. Zhou, C. Liu, M. R. Lyu, and I. King, “Recommender systems with social regularization,” in Proceedings of the fourth ACM international conference on Web search and data mining. ACM, 2011, pp. 287–296.

  12. [12]  X. Yang, H. Steck, and Y. Liu, “Circle-based recommendation in online social networks,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 1267–1275.

  13. [13]  X. Wang, W. Lu, M. Ester, C. Wang, and C. Chen, “Social recommen- dation with strong and weak ties,” in Proceedings of the 25th ACM In- ternational on Conference on Information and Knowledge Management. ACM, 2016, pp. 5–14.

  14. [14]  L. Xiao, Z. Min, Z. Yongfeng, L. Yiqun, and M. Shaoping, “Learning and transferring social and item visibilities for personalized recommen- dation,” in Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. ACM, 2017, pp. 337–346.

  15. [15]  M. Jamali and M. Ester, “Trustwalker: a random walk model for combining trust-based and item-based recommendation,” in Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2009, pp. 397–406.

  16. [16]  H. Ma, H. Yang, M. R. Lyu, and I. King, “Sorec: social recommendation using probabilistic matrix factorization,” in Proceedings of the 17th ACM conference on Information and knowledge management. ACM, 2008, pp. 931–940.

  17. [17]  Y. Shen and R. Jin, “Learning personal+ social latent factor model for social recommendation,” in Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. ACM, 2012, pp. 1303–1311.

  18. [18]  B. Yang, Y. Lei, J. Liu, and W. Li, “Social collaborative filtering by trust,” IEEE transactions on pattern analysis and machine intelligence, vol. 39, no. 8, pp. 1633–1647, 2017.

  19. [19]  M. Jamali and M. Ester, “A matrix factorization technique with trust propagation for recommendation in social networks,” in Proceedings of the fourth ACM conference on Recommender systems. ACM, 2010, pp. 135–142.

  20. [20]  X. Wang, S. C. Hoi, M. Ester, J. Bu, and C. Chen, “Learning personal- ized preference of strong and weak ties for social recommendation,” in Proceedings of the 26th International Conference on World Wide Web, 2017, pp. 1601–1610.

  21. [21]  H.Ma,I.King,andM.R.Lyu,“Learningtorecommendwithsocialtrust ensemble,” in Proceedings of the 32nd international ACM SIGIR con- ference on Research and development in information retrieval. ACM, 2009, pp. 203–210.

  22. [22]  J. Tang, H. Gao, and H. Liu, “mtrust: discerning multi-faceted trust in a connected world,” in Proceedings of the fifth ACM international conference on Web search and data mining. ACM, 2012, pp. 93–102.

  23. [23]  A. J. Chaney, D. M. Blei, and T. Eliassi-Rad, “A probabilistic model for using social networks in personalized item recommendation,” in Proceedings of the 9th ACM Conference on Recommender Systems. ACM, 2015, pp. 43–50.

  24. [24]  Y. Bao, H. Fang, and J. Zhang, “Leveraging decomposed trust in prob- abilistic matrix factorization for effective recommendation,” in AAAI, 2014, p. 350.

  25. [25]  E. Tulving, “Episodic memory: From mind to brain,” Annual review of psychology, vol. 53, no. 1, pp. 1–25, 2002.

  26. [26]  U. M. Dholakia and D. Talukdar, “How social influence affects con- sumption trends in emerging markets: An empirical investigation of the consumption convergence hypothesis,” Psychology & Marketing, vol. 21, no. 10, pp. 775–797, 2004.

  27. [27]  S. Niwattanakul, J. Singthongchai, E. Naenudorn, and S. Wanapu, “Using of jaccard coefficient for keywords similarity,” in Proceedings of the International MultiConference of Engineers and Computer Scientists, vol. 1, no. 6, 2013.

  28. [28]  J. J. Louviere and G. Woodworth, “Design and analysis of simulated consumer choice or allocation experiments: an approach based on aggregate data,” Journal of marketing research, pp. 350–367, 1983.

  29. [29]  G. Palla, I. Dere ́nyi, I. Farkas, and T. Vicsek, “Uncovering the overlap- ping community structure of complex networks in nature and society,” Nature, vol. 435, no. 7043, pp. 814–818, 2005.

  30. [30]  M. D. Hoffman, D. M. Blei, C. Wang, and J. Paisley, “Stochastic variational inference,” The Journal of Machine Learning Research, vol. 14, no. 1, pp. 1303–1347, 2013.

  31. [31]  T. S. Jaakkola and M. I. Jordan, “Bayesian parameter estimation via variational methods,” Statistics and Computing, vol. 10, no. 1, pp. 25– 37, 2000.

  32. [32]  J.M.Herna ́ndez-Lobato,N.Houlsby,andZ.Ghahramani,“Stochastic inference for scalable probabilistic modeling of binary matrices,” in International Conference on Machine Learning, 2014, pp. 379–387.

  33. [33]  A. Honkela, M. Tornio, T. Raiko, and J. Karhunen, “Natural conjugate gradient in variational inference,” in International Conference on Neural Information Processing. Springer, 2007, pp. 305–314.

### 图注意力网络在社交推荐系统中的应用 #### 高阶邻居信息传播的重要性 为了提高社交推荐系统的准确性,利用图结构数据来捕捉用户之间的复杂交互至关重要。高阶邻居信息传播能够帮助模型更好地理解用户的兴趣偏好及其在网络中的位置[^1]。 #### 基于GAT的高阶邻居信息传播机制 Graph Attention Networks (GAT) 使用自注意机制来聚合来自不同距离邻居的信息。具体来说,在每一层中,节点不仅会考虑其直接连接的一阶邻居,还会通过多跳传播获取更远层次上的二阶甚至更高阶邻居的影响。这种设计允许模型自动学习哪些级别的邻接关系最为重要,并赋予相应的权重[^2]。 ```python import torch import torch.nn.functional as F from torch_geometric.nn import GATConv class HighOrderGAT(torch.nn.Module): def __init__(self, in_channels, out_channels): super(HighOrderGAT, self).__init__() self.gat_conv_1 = GATConv(in_channels, 8, heads=8, dropout=0.6) self.gat_conv_2 = GATConv(8 * 8, out_channels, concat=False, dropout=0.6) def forward(self, data): x, edge_index = data.x, data.edge_index # First layer captures first-order neighbors' features. x = F.dropout(x, p=0.6, training=self.training) x = F.elu(self.gat_conv_1(x, edge_index)) # Second layer aggregates higher order neighborhood info. x = F.dropout(x, p=0.6, training=self.training) x = self.gat_conv_2(x, edge_index) return F.log_softmax(x, dim=1) ``` 此代码片段展示了如何构建一个多层GAT架构用于处理社交网络中的节点特征。通过堆叠多个`GATConv`层,可以实现对高阶邻居的有效信息传递和融合[^3]。 #### 应用场景实例分析 在一个典型的社交平台环境中,假设存在大量用户以及他们之间形成的互动链接构成的社会图谱。当某位新加入的朋友发布了新的动态后,其他好友可能会受到不同程度的关注度变化;而这些影响又可能进一步扩散到他们的朋友那里。借助GAT的强大表达能力,算法可以在训练过程中逐渐掌握此类模式并作出精准预测,从而优化个性化内容推送服务体验[^4]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值