5.4 Additional Properties of Determinants

这篇博客介绍了行列式的性质,包括转置矩阵和特殊分块矩阵的行列式计算,如何利用经典伴随矩阵求逆矩阵,以及行列式在确定矩阵可逆性中的作用。博客强调理解行列式的理论意义而非仅仅关注计算,并给出了Cramer's rule的应用示例。习题部分涉及计算和证明行列式的各种问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这一节主要说了转置矩阵行列式的计算、特殊的分块矩阵行列式计算,通过classical adjoint计算行列式,以及通过行列式确定矩阵是否可逆及逆矩阵计算方法(Theorem 4), 最后提了一下Cramer’s rule。最后的最后,作者还苦口婆心的说不要注重行列式的计算,要注重其理论意义和证明,关注how it behaves而不是how to compute。(结果习题上来就是两道compute……)

Exercises

1.Use the classical adjoint formula to compute the inverse of each of the following 3×33\times 33×3 real matrices.
[−23260341−1],[cos⁡θ0−sin⁡θ010sin⁡θ0cos⁡θ]\begin{bmatrix}-2&3&2\\6&0&3\\4&1&-1\end{bmatrix},\qquad \begin{bmatrix}\cos \theta&0&-\sin \theta\\0&1&0\\\sin \theta&0&\cos \theta\end{bmatrix}264301231,cosθ0sinθ010sinθ0cosθ
Solution: Let the first matrix be AAA and the second be BBB.
We have det⁡A=72\det A=72detA=72 and
adj A=[−35918−618614−18]  ⟹  A−1=172[−35918−618614−18]\text{adj }A=\begin{bmatrix}-3&5&9\\18&-6&18\\6&14&-18\end{bmatrix}\implies A^{-1}=\frac{1}{72}\begin{bmatrix}-3&5&9\\18&-6&18\\6&14&-18\end{bmatrix}adj A=3186561491818A1=7213186561491818
We have det⁡B=1\det B=1detB=1 and
adj B=[cos⁡θ0sin⁡θ010−sin⁡θ0cos⁡θ]  ⟹  B−1=[cos⁡θ0sin⁡θ010−sin⁡θ0cos⁡θ]\text{adj }B=\begin{bmatrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{bmatrix}\implies B^{-1}=\begin{bmatrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{bmatrix}adj B=cosθ0sinθ010sinθ0cosθB1=cosθ0sinθ010sinθ0cosθ

2.Use Cramer’s rule to solve each of the following systems of linear equations over the field of rational numbers.
( a ) x+y+z=112x−6y−z=03x+4y+2z=0\begin{aligned}x&+y+z=11\\2x&-6y-z=0\\3x&+4y+2z=0\end{aligned}x2x3x+y+z=116yz=0+4y+2z=0
( b ) 3x−2y=73y−2z=63z−2x=−1\begin{aligned}3x&-2y=7\\3y&-2z=6\\3z&-2x=-1\end{aligned}3x3y3z2y=72z=62x=1
Solution:
( a ) The coefficient matrix AAA of the system is
A=[1112−6−1342],det⁡A=11A=\begin{bmatrix}1&1&1\\2&-6&-1\\3&4&2\end{bmatrix},\qquad \det A=11A=123164112,detA=11
Also we have
B1=[11110−6−1042],B2=[111120−1302],B3=[11112−60340]B_1=\begin{bmatrix}11&1&1\\0&-6&-1\\0&4&2\end{bmatrix},B_2=\begin{bmatrix}1&11&1\\2&0&-1\\3&0&2\end{bmatrix},B_3=\begin{bmatrix}1&1&11\\2&-6&0\\3&4&0\end{bmatrix}B1=1100164112,B2=1231100112,B3=1231641100
A simple calculation shows det⁡B1=−88,det⁡B2=−77,det⁡B3=11×26\det B_1=-88,\det B_2=-77,\det B_3=11\times 26detB1=88,detB2=77,detB3=11×26, thus the solution is (x,y,z)=(−8,−7,26)(x,y,z)=(-8,-7,26)(x,y,z)=(8,7,26).
( b ) The coefficient matrix AAA of the system is
A=[3−2003−2−203],det⁡A=19A=\begin{bmatrix}3&-2&0\\0&3&-2\\-2&0&3\end{bmatrix},\qquad \det A=19A=302230023,detA=19
Also we have
B1=[7−2063−2−103],B2=[37006−2−2−13],B3=[3−27036−20−1]B_1=\begin{bmatrix}7&-2&0\\6&3&-2\\-1&0&3\end{bmatrix},B_2=\begin{bmatrix}3&7&0\\0&6&-2\\-2&-1&3\end{bmatrix},B_3=\begin{bmatrix}3&-2&7\\0&3&6\\-2&0&-1\end{bmatrix}B1=761230023,B2=302761023,B3=302230761
A simple calculation shows det⁡B1=95,det⁡B2=76,det⁡B3=57\det B_1=95,\det B_2=76,\det B_3=57detB1=95,detB2=76,detB3=57, thus the solution is (x,y,z)=(5,4,3)(x,y,z)=(5,4,3)(

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值