这一节主要说了转置矩阵行列式的计算、特殊的分块矩阵行列式计算,通过classical adjoint计算行列式,以及通过行列式确定矩阵是否可逆及逆矩阵计算方法(Theorem 4), 最后提了一下Cramer’s rule。最后的最后,作者还苦口婆心的说不要注重行列式的计算,要注重其理论意义和证明,关注how it behaves而不是how to compute。(结果习题上来就是两道compute……)
Exercises
1.Use the classical adjoint formula to compute the inverse of each of the following 3×33\times 33×3 real matrices.
[−23260341−1],[cosθ0−sinθ010sinθ0cosθ]\begin{bmatrix}-2&3&2\\6&0&3\\4&1&-1\end{bmatrix},\qquad \begin{bmatrix}\cos \theta&0&-\sin \theta\\0&1&0\\\sin \theta&0&\cos \theta\end{bmatrix}⎣⎡−26430123−1⎦⎤,⎣⎡cosθ0sinθ010−sinθ0cosθ⎦⎤
Solution: Let the first matrix be AAA and the second be BBB.
We have detA=72\det A=72detA=72 and
adj A=[−35918−618614−18] ⟹ A−1=172[−35918−618614−18]\text{adj }A=\begin{bmatrix}-3&5&9\\18&-6&18\\6&14&-18\end{bmatrix}\implies A^{-1}=\frac{1}{72}\begin{bmatrix}-3&5&9\\18&-6&18\\6&14&-18\end{bmatrix}adj A=⎣⎡−31865−614918−18⎦⎤⟹A−1=721⎣⎡−31865−614918−18⎦⎤
We have detB=1\det B=1detB=1 and
adj B=[cosθ0sinθ010−sinθ0cosθ] ⟹ B−1=[cosθ0sinθ010−sinθ0cosθ]\text{adj }B=\begin{bmatrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{bmatrix}\implies B^{-1}=\begin{bmatrix}\cos\theta&0&\sin\theta\\0&1&0\\-\sin\theta&0&\cos\theta\end{bmatrix}adj B=⎣⎡cosθ0−sinθ010sinθ0cosθ⎦⎤⟹B−1=⎣⎡cosθ0−sinθ010sinθ0cosθ⎦⎤
2.Use Cramer’s rule to solve each of the following systems of linear equations over the field of rational numbers.
( a ) x+y+z=112x−6y−z=03x+4y+2z=0\begin{aligned}x&+y+z=11\\2x&-6y-z=0\\3x&+4y+2z=0\end{aligned}x2x3x+y+z=11−6y−z=0+4y+2z=0
( b ) 3x−2y=73y−2z=63z−2x=−1\begin{aligned}3x&-2y=7\\3y&-2z=6\\3z&-2x=-1\end{aligned}3x3y3z−2y=7−2z=6−2x=−1
Solution:
( a ) The coefficient matrix AAA of the system is
A=[1112−6−1342],detA=11A=\begin{bmatrix}1&1&1\\2&-6&-1\\3&4&2\end{bmatrix},\qquad \det A=11A=⎣⎡1231−641−12⎦⎤,detA=11
Also we have
B1=[11110−6−1042],B2=[111120−1302],B3=[11112−60340]B_1=\begin{bmatrix}11&1&1\\0&-6&-1\\0&4&2\end{bmatrix},B_2=\begin{bmatrix}1&11&1\\2&0&-1\\3&0&2\end{bmatrix},B_3=\begin{bmatrix}1&1&11\\2&-6&0\\3&4&0\end{bmatrix}B1=⎣⎡11001−641−12⎦⎤,B2=⎣⎡12311001−12⎦⎤,B3=⎣⎡1231−641100⎦⎤
A simple calculation shows detB1=−88,detB2=−77,detB3=11×26\det B_1=-88,\det B_2=-77,\det B_3=11\times 26detB1=−88,detB2=−77,detB3=11×26, thus the solution is (x,y,z)=(−8,−7,26)(x,y,z)=(-8,-7,26)(x,y,z)=(−8,−7,26).
( b ) The coefficient matrix AAA of the system is
A=[3−2003−2−203],detA=19A=\begin{bmatrix}3&-2&0\\0&3&-2\\-2&0&3\end{bmatrix},\qquad \det A=19A=⎣⎡30−2−2300−23⎦⎤,detA=19
Also we have
B1=[7−2063−2−103],B2=[37006−2−2−13],B3=[3−27036−20−1]B_1=\begin{bmatrix}7&-2&0\\6&3&-2\\-1&0&3\end{bmatrix},B_2=\begin{bmatrix}3&7&0\\0&6&-2\\-2&-1&3\end{bmatrix},B_3=\begin{bmatrix}3&-2&7\\0&3&6\\-2&0&-1\end{bmatrix}B1=⎣⎡76−1−2300−23⎦⎤,B2=⎣⎡30−276−10−23⎦⎤,B3=⎣⎡30−2−23076−1⎦⎤
A simple calculation shows detB1=95,detB2=76,detB3=57\det B_1=95,\det B_2=76,\det B_3=57detB1=95,detB2=76,detB3=57, thus the solution is (x,y,z)=(5,4,3)(x,y,z)=(5,4,3)(