JAVA的内存回收机制

在Java中,它的内存管理包括两方面:内存分配(创建Java对象的时候)和内存回收,这两方面工作都是由JVM自动完成的,降低了Java程序员的学习难度,避免了像C/C++直接操作内存的危险。但是,也正因为内存管理完全由JVM负责,所以也使Java很多程序员不再关心内存分配,导致很多程序低效,耗内存。因此就有了Java程序员到最后应该去了解JVM,才能写出更高效,充分利用有限的内存的程序。
1.Java在内存中的状态
首先我们先写一个代码为例子:
Person.java
package test;  import java.io.Serializable;  public class Person implements Serializable {      static final long serialVersionUID = 1L;      String name; // 姓名          Person friend;    //朋友      public Person() {}          public Person(String name) {         super();         this.name = name;     } }
Test.java
package test;   public class Test{      public static void main(String[] args) {         Person p1 = new Person("Kevin");         Person p2 = new Person("Rain");         Person p3 = new Person("Sunny");                  p1.friend = p2;         p3 = p2;         p2 = null;     } }
把上面Test.java中main方面里面的对象引用画成一个从main方法开始的对象引用图的话就是这样的(顶点是对象和引用,有向边是引用关系):
JAVA的内存回收机制

当程序运行起来之后,把它在内存中的状态看成是有向图后,可以分为三种:
1)可达状态:在一个对象创建后,有一个以上的引用变量引用它。在有向图中可以从起始顶点导航到该对象,那它就处于可达状态。
2)可恢复状态:如果程序中某个对象不再有任何的引用变量引用它,它将先进入可恢复状态,此时从有向图的起始顶点不能再导航到该对象。在这个状态下,系统的垃圾回收机制准备回收该对象的所占用的内存,在回收之前,系统会调用finalize()方法进行资源清理,如果资源整理后重新让一个以上引用变量引用该对象,则这个对象会再次变为可达状态;否则就会进入不可达状态。
3)不可达状态:当对象的所有关联都被切断,且系统调用finalize()方法进行资源清理后依旧没有使该对象变为可达状态,则这个对象将永久性失去引用并且变成不可达状态,系统才会真正的去回收该对象所占用的资源。
上述三种状态的转换图如下:
JAVA的内存回收机制

2.Java对对象的4种引用

WeakReference与SoftReference都可以用来保存对象的实例引用,这两个类与垃圾回收有关。

WeakReference是弱引用,其中保存的对象实例可以被GC回收掉。这个类通常用于在某处保存对象引用,而又不干扰该对象被GC回收,通常用于Debug、内存监视工具等程序中。因为这类程序一般要求即要观察到对象,又不能影响该对象正常的GC过程。

最近在JDK的Proxy类的实现代码中也发现了Weakrefrence的应用,Proxy会把动态生成的Class实例暂存于一个由Weakrefrence构成的Map中作为Cache。


SoftReference是强引用,它保存的对象实例,除非JVM即将OutOfMemory,否则不会被GC回收。这个特性使得它特别适合设计对象Cache。对于Cache,我们希望被缓存的对象最好始终常驻内存,但是如果JVM内存吃紧,为了不发生OutOfMemoryError导致系统崩溃,必要的时候也允许JVM回收Cache的内存,待后续合适的时机再把数据重新Load到Cache中。这样可以系统设计得更具弹性。

 

WeakReference的一个测试程序:

 

Java代码   复制代码  收藏代码
  1. import java.lang.ref.WeakReference;   
  2.   
  3. public class WeakReferenceTest {   
  4.   
  5.       
  6.     public static void main(String[] args) {   
  7.         new A();   
  8.         a.str "Hello, reference";   
  9.         WeakReference weak new WeakReference(a);   
  10.         null;   
  11.         int 0;   
  12.         while (weak.get() != null{   
  13.             System.out.println(String.format("Get str from object of WeakReference: %s, count: %d"weak.get().str, ++i));   
  14.             if (i 10 == 0{   
  15.                 System.gc();   
  16.                 System.out.println("System.gc() was invoked!");   
  17.             }   
  18.             try {   
  19.                 Thread.sleep(500);   
  20.             catch (InterruptedException e) {   
  21.   
  22.             }   
  23.         }   
  24.         System.out.println("object was cleared by JVM!");   
  25.     }   
  26.   
  27.  

 程序运行结果:

 

Java代码   复制代码  收藏代码
  1. Get str from object of WeakReference: Hello, reference, count: 1  
  2. Get str from object of WeakReference: Hello, reference, count: 2  
  3. Get str from object of WeakReference: Hello, reference, count: 3  
  4. Get str from object of WeakReference: Hello, reference, count: 4  
  5. Get str from object of WeakReference: Hello, reference, count: 5  
  6. Get str from object of WeakReference: Hello, reference, count: 6  
  7. Get str from object of WeakReference: Hello, reference, count: 7  
  8. Get str from object of WeakReference: Hello, reference, count: 8  
  9. Get str from object of WeakReference: Hello, reference, count: 9  
  10. Get str from object of WeakReference: Hello, reference, count: 10  
  11. System.gc() was invoked!   
  12. object was cleared by JVM!  

 

SoftReference的一个测试程序:

 

Java代码   复制代码  收藏代码
  1. import java.lang.ref.SoftReference;   
  2.   
  3. public class SoftReferenceTest {   
  4.   
  5.       
  6.     public static void main(String[] args) {   
  7.         new A();   
  8.         a.str "Hello, reference";   
  9.         SoftReference sr new SoftReference(a);   
  10.         null;   
  11.         int 0;   
  12.         while (sr.get() != null{   
  13.             System.out.println(String.format("Get str from object of SoftReference: %s, count: %d"sr.get().str, ++i));   
  14.             if (i 10 == 0{   
  15.                 System.gc();   
  16.                 System.out.println("System.gc() was invoked!");   
  17.             }   
  18.             try {   
  19.                 Thread.sleep(500);   
  20.             catch (InterruptedException e) {   
  21.   
  22.             }   
  23.         }   
  24.         System.out.println("object was cleared by JVM!");   
  25.     }   
  26.   
  27.  

 程序运行结果:

 

Java代码   复制代码  收藏代码
  1. Get str from object of SoftReference: Hello, reference, count: 1  
  2. Get str from object of SoftReference: Hello, reference, count: 2  
  3. Get str from object of SoftReference: Hello, reference, count: 3  
  4. Get str from object of SoftReference: Hello, reference, count: 4  
  5. Get str from object of SoftReference: Hello, reference, count: 5  
  6. Get str from object of SoftReference: Hello, reference, count: 6  
  7. Get str from object of SoftReference: Hello, reference, count: 7  
  8. Get str from object of SoftReference: Hello, reference, count: 8  
  9. Get str from object of SoftReference: Hello, reference, count: 9  
  10. Get str from object of SoftReference: Hello, reference, count: 10  
  11. System.gc() was invoked!   
  12. Get str from object of SoftReference: Hello, reference, count: 11  
  13. Get str from object of SoftReference: Hello, reference, count: 12  
  14. Get str from object of SoftReference: Hello, reference, count: 13  
  15. Get str from object of SoftReference: Hello, reference, count: 14  
  16. Get str from object of SoftReference: Hello, reference, count: 15  
  17. Get str from object of SoftReference: Hello, reference, count: 16  
  18. Get str from object of SoftReference: Hello, reference, count: 17  
  19. Get str from object of SoftReference: Hello, reference, count: 18  
  20. Get str from object of SoftReference: Hello, reference, count: 19  
  21. Get str from object of SoftReference: Hello, reference, count: 20  
  22. System.gc() was invoked!   
  23. Get str from object of SoftReference: Hello, reference, count: 21  
  24. Get str from object of SoftReference: Hello, reference, count: 22  
  25. Get str from object of SoftReference: Hello, reference, count: 23  
  26. Get str from object of SoftReference: Hello, reference, count: 24  
  27. Get str from object of SoftReference: Hello, reference, count: 25  
  28. Get str from object of SoftReference: Hello, reference, count: 26  
  29. Get str from object of SoftReference: Hello, reference, count: 27  
  30. Get str from object of SoftReference: Hello, reference, count: 28  

 

自己的标注 写道
上面的打印结果会一直持续下去。 因为soft.get()一直不会为空







SoftReference比WeakReference生命力更强,当JVM的内存不吃紧时,即使引用的对象被置为空了,Soft还可以保留对该对象的引用,此时的JVM内存池实际上还保有原来对象,只有当内存吃紧的情况下JVM才会清除Soft的引用对象,并且会在未来重新加载该引用的对象。  

而WeakReference则当清理内存池时会自动清理掉引用的对象。 
 
1)强引用 :创建一个对象并把这个对象直接赋给一个变量,eg :Person person = new Person(“sunny”); 不管系统资源有么的紧张,强引用的对象都绝对不会被回收,即使他以后不会再用到
2)软引用 :通过SoftReference类实现,eg : SoftReference p = new SoftReference(new Person(“Rain”));,内存非常紧张的时候会被回收,其他时候不会被回收,所以在使用之前要判断是否为null从而判断他是否已经被回收了。
3)弱引用 :通过WeakReference类实现,eg : WeakReference p = new WeakReference(new Person(“Rain”));不管内存是否足够,系统垃圾回收时必定会回收。
4)虚引用 :不能单独使用,主要是用于追踪对象被垃圾回收的状态。通过PhantomReference类和引用队列ReferenceQueue类联合使用实现,eg :
package test;  import java.lang.ref.PhantomReference; import java.lang.ref.ReferenceQueue;   public class Test{      public static void main(String[] args) {         //创建一个对象         Person person = new Person("Sunny");             //创建一个引用队列             ReferenceQueue rq = new ReferenceQueue();         //创建一个虚引用,让此虚引用引用到person对象         PhantomReference pr = new PhantomReference(person, rq);         //切断person引用变量和对象的引用         person = null;         //试图取出虚引用所引用的对象         //发现程序并不能通过虚引用访问被引用对象,所以此处输出为null         System.out.println(pr.get());         //强制垃圾回收         System.gc();         System.runFinalization();         //因为一旦虚引用中的对象被回收后,该虚引用就会进入引用队列中         //所以用队列中最先进入队列中引用与pr进行比较,输出true         System.out.println(rq.poll() == pr);     } }
运行结果:
JAVA的内存回收机制

3.Java垃圾回收机制
其实Java垃圾回收主要做的是两件事:1)内存回收 2)碎片整理
3.1垃圾回收算法
1)串行回收(只用一个CPU)和并行回收(多个CPU才有用):串行回收是不管系统有多少个CPU,始终只用一个CPU来执行垃圾回收操作,而并行回收就是把整个回收工作拆分成多个部分,每个部分由一个CPU负责,从而让多个CPU并行回收。并行回收的执行效率很高,但复杂度增加,另外也有一些副作用,如内存随便增加。
2)并发执行和应用程序停止 :应用程序停止(Stop-the-world)顾名思义,其垃圾回收方式在执行垃圾回收的同时会导致应用程序的暂停。并发执行的垃圾回收虽然不会导致应用程序的暂停,但由于并发执行垃圾需要解决和应用程序的执行冲突(应用程序可能在垃圾回收的过程修改对象),因此并发执行垃圾回收的系统开销比Stop-the-world高,而且执行时需要更多的堆内存。
3)压缩和不压缩和复制:
①支持压缩的垃圾回收器(标记-压缩 = 标记清除+压缩)会把所有的可达对象搬迁到一起,然后将之前占用的内存全部回收,减少了内存碎片。
②不压缩的垃圾回收器(标记-清除)要遍历两次,第一次先从跟开始访问所有可达对象,并将他们标记为可达状态,第二次便利整个内存区域,对未标记可达状态的对象进行回收处理。这种回收方式不压缩,不需要额外内存,但要两次遍历,会产生碎片
复制式的垃圾回收器:将堆内存分成两个相同空间,从根(类似于前面的有向图起始顶点)开始访问每一个关联的可达对象,将空间A的全部可达对象复制到空间B,然后一次性回收空间A。对于该算法而言,因为只需访问所有的可达对象,将所有的可达对象复制走之后就直接回收整个空间,完全不用理会不可达对象,所以遍历空间的成本较小,但需要巨大的复制成本和较多的内存。
JAVA的内存回收机制

3.2堆内存的分代回收
1)分代回收的依据:
①对象生存时间的长短:大部分对象在Young期间就被回收
②不同代采取不同的垃圾回收策略:新(生存时间短)老(生存时间长)对象之间很少存在引用
2) 堆内存的分代:
①Young代:
Ⅰ回收机制:因为对象数量少,所以采用复制回收。
Ⅱ组成区域:由1个Eden区和2个Survivor区构成,同一时间的两个Survivor区,一个用来保存对象,另一个是空的;每次进行Young代垃圾回收的时候,就把Eden,From中的可达对象复制到To区域中,一些生存时间长的就复制到了老年代,接着清除Eden,From空间,最后原来的To空间变为From空间,原来的From空间变为To空间。
Ⅲ对象来源:绝大多数对象先分配到Eden区,一些大的对象会直接被分配到Old代中。
Ⅳ回收频率:因为Young代对象大部分很快进入不可达状态,因此回收频率高且回收速度快

JAVA的内存回收机制

           
JAVA的内存回收机制


②Old代:
Ⅰ回收机制:采用标记压缩算法回收。
Ⅱ对象来源:1.对象大直接进入老年代。
2.Young代中生存时间长的可达对象
Ⅲ回收频率:因为很少对象会死掉,所以执行频率不高,而且需要较长时间来完成。
③Permanent代:
Ⅰ用      途:用来装载Class,方法等信息,默认为64M,不会被回收
Ⅱ对象来源:eg:对于像Hibernate,Spring这类喜欢AOP动态生成类的框架,往往会生成大量的动态代理类,因此需要更多的Permanent代内存。所以我们经常在调试Hibernate,Spring的时候经常遇到java.lang.OutOfMemoryError:PermGen space的错误,这就是Permanent代内存耗尽所导致的错误。
Ⅲ回收频率:不会被回收
3.3常见的垃圾回收器
1)串行回收器(只使用一个CPU):Young代采用串行复制算法;Old代使用串行标记压缩算法(三个阶段:标记mark—清除sweep—压缩compact),回收期间程序会产生暂停,
2)并行回收器:对Young代采用的算法和串行回收器一样,只是增加了多CPU并行处理;对Old代的处理和串行回收器完全一样,依旧是单线程。
3)并行压缩回收器:对Young代处理采用与并行回收器完全一样的算法;只是对Old代采用了不同的算法,其实就是划分不同的区域,然后进行标记压缩算法:
① 将Old代划分成几个固定区域;
② mark阶段(多线程并行),标记可达对象;
③ summary阶段(串行执行),从最左边开始检验知道找到某个达到数值(可达对象密度小)的区域时,此区域及其右边区域进行压缩回收,其左端为密集区域
④ compact阶段(多线程并行),识别出需要装填的区域,多线程并行的把数据复制到这些区域中。经此过程后,Old代一端密集存在大量活动对象,另一端则存在大块空间。
4)并发标识—清理回收(CMS):对Young代处理采用与并行回收器完全一样的算法;只是对Old代采用了不同的算法,但归根待地还是标记清理算法:
① 初始标识(程序暂停):标记被直接引用的对象(一级对象);
② 并发标识(程序运行):通过一级对象寻找其他可达对象;
③ 再标记(程序暂停):多线程并行的重新标记之前可能因为并发而漏掉的对象(简单的说就是防遗漏)
④ 并发清理(程序运行)
4.内存管理小技巧
1)尽量使用直接量,eg:String javaStr = “小学徒的成长历程”;
2)使用StringBuilder和StringBuffer进行字符串连接等操作;
3)尽早释放无用对象;
4)尽量少使用静态变量;
5)缓存常用的对象:可以使用开源的开源缓存实现,eg:OSCache,Ehcache;
6)尽量不使用finalize()方法;
7)在必要的时候可以考虑使用软引用SoftReference。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值