R Unleash Machine Learning Techniques 免积分下载

本书通过实际项目教授读者如何使用R语言进行机器学习,涵盖数据清理、算法实现及解决现实问题,适合中级到高级数据科学家。

R Unleash Machine Learning Techniques

R Unleash Machine Learning Techniques

本书介绍

了解如何用R构建更智能的机器学习系统,遵循这三个模块课程,成为一个更流畅的机器学习实践者。

关于这本书

用r建立你的信心,找出如何解决大量与数据相关的问题。掌握今天数据科学家和分析人员使用的一些最重要的机器学习技术。不要仅仅学习--通过跟踪涵盖从金融建模到社交媒体分析的所有特色的实际项目来应用你的知识。

这本书是给谁的

针对已经进入数据科学领域的中级到高级人员(特别是数据科学家)。

你会学到什么

掌握r技术来清理和准备你的数据以供分析,并可视化你的结果。从无到有地实现r机器学习算法,并惊讶地看到这些算法在行动中。使用机器学习和r来解决有趣的现实世界问题。编写可重用的代码并从头开始构建完整的机器学习系统。学习专门的机器学习技术,用于文本挖掘、社交网络数据、大数据等等。发现不同类型的机器学习模型,学习哪些是最适合您的数据需求和解决您的分析问题的机器学习模型。评估和改进机器学习模型的性能。学习专门的机器学习技术,用于文本挖掘、社交网络数据、大数据等等。

详情

r是世界各地的数据分析和统计学家的既定语言。你不应该害怕使用它。

这条学习之路将带您了解r的基本原理,并演示如何通过机器学习来解决各种不同的挑战。可访问的,但全面的,它为您提供了您需要的一切,使您成为一个更流畅的数据专业,并对r更有信心。

在第一个模块中,您将掌握R的基本原理--这意味着您将在了解语言如何工作的一些细节之后,再了解如何将您的知识付诸实践,从而构建一些简单的机器学习项目,这些项目可能对一系列现实世界的问题很有用。

对于下面的两个模块,我们将开始更详细地研究机器学习算法。在基础知识的基础上,你将完成三个不同的项目来测试你的技能。涵盖了一些最重要的算法和一些最受欢迎的R软件包,它们都集中在解决不同领域的实际问题,从金融到社交媒体。

这条学习之路是从三种Packt产品中发展出来的:

R Machine Learning By Example By Raghav Bali, Dipanjan Sarkar

Machine Learning with R Learning - Second Edition By Brett Lantz

Mastering Machine Learning with R By Cory Lesmeister

目录

Module 1: R Machine Learning By Example

Chapter 1: Getting Started with R and Machine Learning

Chapter 2: Let's Help Machines Learn

Chapter 3: Predicting Customer Shopping Trends with Market Basket Analysis

Chapter 4: Building a Product Recommendation System

Chapter 5: Credit Risk Detection and Prediction – Descriptive Analytics

Chapter 6: Credit Risk Detection and Prediction – Predictive Analytics

Chapter 7: Social Media Analysis – Analyzing Twitter Data

Chapter 8: Sentiment Analysis of Twitter Data

Module 2: Machine Learning with R

Chapter 1: Introducing Machine Learning

Chapter 2: Managing and Understanding Data

Chapter 3: Lazy Learning – Classification Using Nearest Neighbors

Chapter 4: Probabilistic Learning – Classification Using Naive Bayes

Chapter 5: Divide and Conquer – Classification Using Decision Trees and Rules

Chapter 6: Forecasting Numeric Data – Regression Methods

Chapter 7: Black Box Methods – Neural Networks and Support Vector Machines

Chapter 8: Finding Patterns – Market Basket Analysis Using Association Rules

Chapter 9: Finding Groups of Data – Clustering with k-means

Chapter 10: Evaluating Model Performance

Chapter 11: Improving Model Performance

Chapter 12: Specialized Machine Learning Topics

Module 3: Mastering Machine Learning with R

Chapter 1: A Process for Success

Chapter 2: Linear Regression – The Blocking and Tackling of Machine Learning

Chapter 3: Logistic Regression and Discriminant Analysis

Chapter 4: Advanced Feature Selection in Linear Models

Chapter 5: More Classification Techniques – K-Nearest Neighbors and Support Vector Machines

Chapter 6: Classification and Regression Trees

Chapter 7: Neural Networks

Chapter 8: Cluster Analysis

Chapter 9: Principal Components Analysis

Chapter 10: Market Basket Analysis and Recommendation Engines

Chapter 11: Time Series and Causality

Chapter 12: Text Mining

Appendix: R Fundamentals

下载地址:Packt R Unleash Machine Learning Techniques.pdf

更多免费电子书

转载于:https://my.oschina.net/u/3070312/blog/2997557

Find out how to build smarter machine learning systems with R. Follow this three module course to become a more fluent machine learning practitioner. About This Book Build your confidence with R and find out how to solve a huge range of data-related problems Get to grips with some of the most important machine learning techniques being used by data scientists and analysts across industries today Don't just learn – apply your knowledge by following featured practical projects covering everything from financial modeling to social media analysis Who This Book Is For Aimed for intermediate-to-advanced people (especially data scientist) who are already into the field of data science What You Will Learn Get to grips with R techniques to clean and prepare your data for analysis, and visualize your results Implement R machine learning algorithms from scratch and be amazed to see the algorithms in action Solve interesting real-world problems using machine learning and R as the journey unfolds Write reusable code and build complete machine learning systems from the ground up Learn specialized machine learning techniques for text mining, social network data, big data, and more Discover the different types of machine learning models and learn which is best to meet your data needs and solve your analysis problems Evaluate and improve the performance of machine learning models Learn specialized machine learning techniques for text mining, social network data, big data, and more In Detail R is the established language of data analysts and statisticians around the world. And you shouldn't be afraid to use it... This Learning Path will take you through the fundamentals of R and demonstrate how to use the language to solve a diverse range of challenges through machine learning. Accessible yet comprehensive, it provides you with everything you need to become more a more fluent data professional, and more confident with R. In the first module you'll get to grips with the fundamentals of R. This means you'll be taking a look at some of the details of how the language works, before seeing how to put your knowledge into practice to build some simple machine learning projects that could prove useful for a range of real world problems. For the following two modules we'll begin to investigate machine learning algorithms in more detail. To build upon the basics, you'll get to work on three different projects that will test your skills. Covering some of the most important algorithms and featuring some of the most popular R packages, they're all focused on solving real problems in different areas, ranging from finance to social media. This Learning Path has been curated from three Packt products: R Machine Learning By Example By Raghav Bali, Dipanjan Sarkar Machine Learning with R Learning - Second Edition By Brett Lantz Mastering Machine Learning with R By Cory Lesmeister Style and approach This is an enticing learning path that starts from the very basics to gradually pick up pace as the story unfolds. Each concept is first defined in the larger context of things succinctly, followed by a detailed explanation of their application. Each topic is explained with the help of a project that solves a real-world problem involving hands-on work thus giving you a deep insight into the world of machine learning. Table of Contents Module 1: R Machine Learning By Example Chapter 1: Getting Started with R and Machine Learning Chapter 2: Let's Help Machines Learn Chapter 3: Predicting Customer Shopping Trends with Market Basket Analysis Chapter 4: Building a Product Recommendation System Chapter 5: Credit Risk Detection and Prediction – Descriptive Analytics Chapter 6: Credit Risk Detection and Prediction – Predictive Analytics Chapter 7: Social Media Analysis – Analyzing Twitter Data Chapter 8: Sentiment Analysis of Twitter Data Module 2: Machine Learning with R Chapter 1: Introducing Machine Learning Chapter 2: Managing and Understanding Data Chapter 3: Lazy Learning – Classification Using Nearest Neighbors Chapter 4: Probabilistic Learning – Classification Using Naive Bayes Chapter 5: Divide and Conquer – Classification Using Decision Trees and Rules Chapter 6: Forecasting Numeric Data – Regression Methods Chapter 7: Black Box Methods – Neural Networks and Support Vector Machines Chapter 8: Finding Patterns – Market Basket Analysis Using Association Rules Chapter 9: Finding Groups of Data – Clustering with k-means Chapter 10: Evaluating Model Performance Chapter 11: Improving Model Performance Chapter 12: Specialized Machine Learning Topics Module 3: Mastering Machine Learning with R Chapter 1: A Process for Success Chapter 2: Linear Regression – The Blocking and Tackling of Machine Learning Chapter 3: Logistic Regression and Discriminant Analysis Chapter 4: Advanced Feature Selection in Linear Models Chapter 5: More Classification Techniques – K-Nearest Neighbors and Support Vector Machines Chapter 6: Classification and Regression Trees Chapter 7: Neural Networks Chapter 8: Cluster Analysis Chapter 9: Principal Components Analysis Chapter 10: Market Basket Analysis and Recommendation Engines Chapter 11: Time Series and Causality Chapter 12: Text Mining Appendix: R Fundamentals
【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)内容概要:本文介绍了名为《【顶级EI完整复现】【DRCC】考虑N-1准则的分布鲁棒机会约束低碳经济调度(Matlab代码实现)》的技术资源,聚焦于电力系统中低碳经济调度问题,结合N-1安全准则与分布鲁棒机会约束(DRCC)方法,提升调度模型在不确定性环境下的鲁棒性和可行性。该资源提供了完整的Matlab代码实现,涵盖建模、优化求解及仿真分析全过程,适用于复杂电力系统调度场景的科研复现与算法验证。文中还列举了大量相关领域的研究主题与代码资源,涉及智能优化算法、机器学习、电力系统管理、路径规划等多个方向,展示了广泛的科研应用支持能力。; 适合人群:具备一定电力系统、优化理论和Matlab编程基础的研究生、科研人员及从事能源调度、智能电网相关工作的工程师。; 使用场景及目标:①复现高水平期刊(如EI/SCI)关于低碳经济调度的研究成果;②深入理解N-1安全约束与分布鲁棒优化在电力调度中的建模方法;③开展含新能源接入的电力系统不确定性优化研究;④为科研项目、论文撰写或工程应用提供可运行的算法原型和技术支撑。; 阅读建议:建议读者结合文档提供的网盘资源,下载完整代码与案例数据,按照目录顺序逐步学习,并重点理解DRCC建模思想与Matlab/YALMIP/CPLEX等工具的集成使用方式,同时可参考文中列出的同类研究方向拓展研究思路。
内容概要:本文详细介绍了一个基于MATLAB实现的电力负荷预测项目,采用K近邻回归(KNN)算法进行建模。项目从背景意义出发,阐述了电力负荷预测在提升系统效率、优化能源配置、支撑智能电网和智慧城市建设等方面的重要作用。针对负荷预测中影响因素多样、时序性强、数据质量差等挑战,提出了包括特征工程、滑动窗口构造、数据清洗与标准化、K值与距离度量优化在内的系统性解决方案。模型架构涵盖数据采集、预处理、KNN回归原理、参数调优、性能评估及工程部署全流程,并支持多算法集成与可视化反馈。文中还提供了MATLAB环境下完整的代码实现流程,包括数据加载、归一化、样本划分、K值选择、模型训练预测、误差分析与结果可视化等关键步骤,增强了模型的可解释性与实用性。; 适合人群:具备一定MATLAB编程基础和机器学习基础知识,从事电力系统分析、能源管理、智能电网或相关领域研究的研发人员、工程师及高校师生;适合工作1-3年希望提升实际项目开发能力的技术人员; 使用场景及目标:①应用于短期电力负荷预测,辅助电网调度与发电计划制定;②作为教学案例帮助理解KNN回归在实际工程中的应用;③为新能源接入、需求响应、智慧能源系统提供数据支持;④搭建可解释性强、易于部署的轻量级预测模型原型; 阅读建议:建议结合MATLAB代码实践操作,重点关注特征构造、参数调优与结果可视化部分,深入理解KNN在时序数据中的适应性改进方法,并可进一步拓展至集成学习或多模型融合方向进行研究与优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值