Building Machine Learning Projects with TensorFlow 免积分下载

本书通过13个实战项目和4个实例,教授如何在生产环境中高效应用TensorFlow进行数值计算,涵盖模型训练、机器学习、深度学习及神经网络应用。项目涉及数据处理、分类、回归、图像标记及特征检测等,适合希望深入了解TensorFlow实践的读者。
部署运行你感兴趣的模型镜像

关键的特点厌倦了太多的理论对坦索弗洛?这本书是你需要的!13个坚实的项目和四个例子教你如何在生产中实现TensorFlow。本示例丰富的指南教您如何使用TensorFlow执行高精度和高效的数值计算,这是一个实用的、有条理的解释指南,允许您从一开始就应用TensorFlow的特性。本书强调了如何在不同的场景中使用TensorFlow--包括用于训练模型、机器学习、深度学习和使用各种神经网络的项目。每个项目提供令人兴奋和有洞察力的练习,这些练习将教您如何使用TensorFlow,并向您展示如何通过使用张量来探索数据层。只需选择一个与您的环境相一致的项目,并获得关于如何在生产中实现TensorFlow的大量信息。您将学习加载、交互、解剖、处理和保存复杂数据集,使用最先进的技术解决分类和回归问题,使用线性回归模型预测简单时间序列的结果使用Logistic回归方案来预测时间序列分类图像的未来结果,使用深度神经网络方案标记一组图像,并使用深神经网络检测特征,包括卷积神经网络(CNN)层利用递归神经网络(RNN)模型解决字符识别问题,作者Rodolfo Bonnin是阿根廷国立科技大学(Universidad Tecnologica Nacional)的系统工程师和博士生。他还在德国斯图加特大学学习并行编程和图像理解研究生课程。他从2005开始研究高性能计算,并于2008开始研究和实现卷积神经网络,编写了一个CPU和支持GPU的神经网络前馈阶段。

目录

Chapter 1. Exploring and Transforming Data
Chapter 2. Clustering
Chapter 3. Linear Regression
Chapter 4. Logistic Regression
Chapter 5. Simple FeedForward Neural Networks
Chapter 6. Convolutional Neural Networks
Chapter 7. Recurrent Neural Networks and LSTM
Chapter 8. Deep Neural Networks
Chapter 9. Running Models at Scale – GPU and Serving

Chapter 10. Library Installation and Additional Tips

 

免积分下载地址:Packt Building Machine Learning Projects with TensorFlow.pdf

更多免积分电子书,请访问:IE布克斯网

转载于:https://my.oschina.net/u/3070312/blog/2997555

您可能感兴趣的与本文相关的镜像

TensorFlow-v2.15

TensorFlow-v2.15

TensorFlow

TensorFlow 是由Google Brain 团队开发的开源机器学习框架,广泛应用于深度学习研究和生产环境。 它提供了一个灵活的平台,用于构建和训练各种机器学习模型

Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. Purchase of the print book includes a free eBook in PDF, Kindle, and ePub formats from Manning Publications. About the Technology TensorFlow, Google's library for large-scale machine learning, simplifies often-complex computations by representing them as graphs and efficiently mapping parts of the graphs to machines in a cluster or to the processors of a single machine. About the Book Machine Learning with TensorFlow gives readers a solid foundation in machine-learning concepts plus hands-on experience coding TensorFlow with Python. You'll learn the basics by working with classic prediction, classification, and clustering algorithms. Then, you'll move on to the money chapters: exploration of deep-learning concepts like autoencoders, recurrent neural networks, and reinforcement learning. Digest this book and you will be ready to use TensorFlow for machine-learning and deep-learning applications of your own. What's Inside Matching your tasks to the right machine-learning and deep-learning approachesVisualizing algorithms with TensorBoardUnderstanding and using neural networks About the Reader Written for developers experienced with Python and algebraic concepts like vectors and matrices. About the Author Author Nishant Shukla is a computer vision researcher focused on applying machine-learning techniques in robotics. Senior technical editor, Kenneth Fricklas, is a seasoned developer, author, and machine-learning practitioner. Table of Contents PART 1 - YOUR MACHINE-LEARNING RIGA machine-learning odysseyTensorFlow essentialsPART 2 - CORE LEARNING ALGORITHMSLinear regression and beyondA gentle introduction to classificationAutomatically clustering dataHidden Markov models PART 3 - THE NEURAL NETWORK PARADIGMA peek into autoencodersReinforcement learningConvolutional neural networksRecurrent neural networksSequence-to-sequence models for chatbotsUtility landscape
Create Deep Learning and Reinforcement Learning apps for multiple platforms with TensorFlow Key Features Build TensorFlow-powered AI applications for mobile and embedded devices Learn modern AI topics such as computer vision, NLP, and deep reinforcement learning Get practical insights and exclusive working code not available in the TensorFlow documentation Book Description As a developer, you always need to keep an eye out and be ready for what will be trending soon, while also focusing on what's trending currently. So, what's better than learning about the integration of the best of both worlds, the present and the future? Artificial Intelligence (AI) is widely regarded as the next big thing after mobile, and Google's TensorFlow is the leading open source machine learning framework, the hottest branch of AI. This book covers more than 10 complete iOS, Android, and Raspberry Pi apps powered by TensorFlow and built from scratch, running all kinds of cool TensorFlow models offline on-device: from computer vision, speech and language processing to generative adversarial networks and AlphaZero-like deep reinforcement learning. You'll learn how to use or retrain existing TensorFlow models, build your own models, and develop intelligent mobile apps running those TensorFlow models. You'll learn how to quickly build such apps with step-by-step tutorials and how to avoid many pitfalls in the process with lots of hard-earned troubleshooting tips. What you will learn Classify images with transfer learning Detect objects and their locations Transform pictures with amazing art styles Understand simple speech commands Describe images in natural language Recognize drawing with Convolutional Neural Network and Long Short-Term Memory Predict stock price with Recurrent Neural Network in TensorFlow and Keras Generate and enhance images with generative adversarial networks Build AlphaZero-like mobile game app in TensorFlow and Keras
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值