Number Sequence
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 77210 Accepted Submission(s): 17999
Problem Description
A number sequence is defined as follows:
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
f(1) = 1, f(2) = 1, f(n) = (A * f(n - 1) + B * f(n - 2)) mod 7.
Given A, B, and n, you are to calculate the value of f(n).
Input
The input consists of multiple test cases. Each test case contains 3 integers A, B and n on a single line (1 <= A, B <= 1000, 1 <= n <= 100,000,000). Three zeros signal the end of input and this test case is not to be processed.
Output
For each test case, print the value of f(n) on a single line.
Sample Input
1 1 3 1 2 10 0 0 0
Sample Output
2 5
(1)递归,会导致栈空间用尽;
(2)循环,有时间限制
(3)分析下题目,可知道存在周期性,周期为49。先用一个数组保存一个周期内所有值,用查表法求解
#include <stdio.h>
#include <stdlib.h>
unsigned int a, b, n,num[50];
int main(void)
{
#if 1
freopen("in.txt","r",stdin);
#endif
/*put your own code here*/
unsigned int i;
while(scanf( "%u %u %u", &a, &b, &n) && ((a || b || n) != 0))
{
for(i = 1; i < 50; i++)
{
if( i == 1 || i == 2)
num[i] = 1;
else
num[i] = (a * num[i-1] + b * num[i-2]) % 7;
}
printf("%u\n", num[n%49]);
}
return 0;
}