AES-C代码实现

本文介绍了一个AES加密算法的具体实现过程,包括密钥调度、状态转换等核心步骤,并提供了完整的源代码示例。通过该实现可以了解AES算法的工作原理及其内部细节。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 /*@file aes.c
compiled ok with mingGW/VC++ by chinayaosir
*/

#include <stdio.h>
#define BYTE unsigned char       /* 8 bits  */
#define WORD unsigned long       /* 32 bits */

/* rotates x one bit to the left */

#define ROTL(x) (((x)>>7)|((x)<<1))

/* Rotates 32-bit word left by 1, 2 or 3 byte  */

#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))

/* Fixed Data */

static BYTE InCo[4]={0xB,0xD,0x9,0xE};  /* Inverse Coefficients */

static BYTE fbsub[256];
static BYTE rbsub[256];
static BYTE ptab[256],ltab[256];
static WORD ftable[256];
static WORD rtable[256];
static WORD rco[30];

/* Parameter-dependent data */

int Nk,Nb,Nr;
BYTE fi[24],ri[24];
WORD fkey[120];
WORD rkey[120];

static WORD pack(BYTE *b)
{ /* pack bytes into a 32-bit Word */
    return ((WORD)b[3]<<24)|((WORD)b[2]<<16)|((WORD)b[1]<<8)|(WORD)b[0];
}

static void unpack(WORD a,BYTE *b)
{ /* unpack bytes from a word */
    b[0]=(BYTE)a;
    b[1]=(BYTE)(a>>8);
    b[2]=(BYTE)(a>>16);
    b[3]=(BYTE)(a>>24);
}

//关于模多项式0x011b的乘10b运算
static BYTE xtime(BYTE a)
{
    BYTE b;
    if (a&0x80) b=0x1B;
    else        b=0;
    a<<=1;
    a^=b;
    return a;
}

static BYTE bmul(BYTE x,BYTE y)
{ /* x.y= AntiLog(Log(x) + Log(y)) */
    if (x && y) return ptab[(ltab[x]+ltab[y])%255];
    else return 0;
}

static WORD SubByte(WORD a)
{
    BYTE b[4];
    unpack(a,b);
    b[0]=fbsub[b[0]];
    b[1]=fbsub[b[1]];
    b[2]=fbsub[b[2]];
    b[3]=fbsub[b[3]];
    return pack(b);   
}

static BYTE product(WORD x,WORD y)
{ /* dot product of two 4-byte arrays */
    BYTE xb[4],yb[4];
    unpack(x,xb);
    unpack(y,yb);
    return bmul(xb[0],yb[0])^bmul(xb[1],yb[1])^bmul(xb[2],yb[2])^bmul(xb[3],yb[3]);
}

static WORD InvMixCol(WORD x)
{ /* matrix Multiplication */
    WORD y,m;
    BYTE b[4];

    m=pack(InCo);
    b[3]=product(m,x);
    m=ROTL24(m);
    b[2]=product(m,x);
    m=ROTL24(m);
    b[1]=product(m,x);
    m=ROTL24(m);
    b[0]=product(m,x);
    y=pack(b);
    return y;
}

BYTE ByteSub(BYTE x)
{
    BYTE y=ptab[255-ltab[x]];  /* multiplicative inverse */
    x=y;  x=ROTL(x);
    y^=x; x=ROTL(x);
    y^=x; x=ROTL(x);
    y^=x; x=ROTL(x);
    y^=x; y^=0x63;
    return y;
}

void gentables(void)
{ /* generate tables */
    int i;
    BYTE y,b[4];

  /* use 3 as primitive root to generate power and log tables */

    ltab[0]=0;
    ptab[0]=1;  ltab[1]=0;
    ptab[1]=3;  ltab[3]=1;
    for (i=2;i<256;i++)
    {
        ptab[i]=ptab[i-1]^xtime(ptab[i-1]);
        ltab[ptab[i]]=i;
    }
   
  /* affine transformation:- each bit is xored with itself shifted one bit
 仿射变换
 */

    fbsub[0]=0x63;
    rbsub[0x63]=0;
    for (i=1;i<256;i++)
    {
        y=ByteSub((BYTE)i);
        fbsub[i]=y; rbsub[y]=i;
    }

    for (i=0,y=1;i<30;i++)
    {
        rco[i]=y;
        y=xtime(y);
    }

  /* calculate forward and reverse tables */
    for (i=0;i<256;i++)
    {
        y=fbsub[i];
        b[3]=y^xtime(y); b[2]=y;
        b[1]=y;          b[0]=xtime(y);
        ftable[i]=pack(b);

        y=rbsub[i];
        b[3]=bmul(InCo[0],y); b[2]=bmul(InCo[1],y);
        b[1]=bmul(InCo[2],y); b[0]=bmul(InCo[3],y);
        rtable[i]=pack(b);
    }
}

void strtoHex(char *str,char *hex)
{
 char ch;
 int     i=0, by = 0;

   while(i < 64 && *str)        // the maximum key length is 32 bytes(256 bits) and
    {                           // hence at most 64 hexadecimal digits
        ch = toupper(*str++);   // process a hexadecimal digit
 
        if(ch >= '0' && ch <= '9')
            by = (by << 4) + ch - '0';
        else if(ch >= 'A' && ch <= 'F')
            by = (by << 4) + ch - 'A' + 10;
        else                    // error if not hexadecimal
        {
            printf("key must be in hexadecimal notation/n");
            exit(0);
        }

        // store a key byte for each pair of hexadecimal digits
        if(i++ & 1)
            hex[i / 2 - 1] = by & 0xff; 
      }
}
void hextoStr(char *hex,char *str)
{
    int i=0, by = 0;

   while(i < 32 && *hex)        // the maximum key length is 32 bytes(256 bits) and
    {                           // hence at most 64 hexadecimal digits
        by = *hex ;              // process a hexadecimal digit(high)
    by=by>>4 &0x0f;
        if(by >= 0 && by <= 9)
            *str++ = by + '0';
        else if(by >= 0x0A && by <= 0x0F)
            *str++ = by -  10+ 'A';
        by = *hex++;            // process a hexadecimal digit(low)
    by=by &0x0f;
        if(by >= 0 && by <= 9)
            *str++ = by + '0';
        else if(by >= 0x0A && by <= 0x0F)
            *str++ = by -  10+ 'A';
  i++;
      }
}


void gkey(int nb,int nk,char *key)
{ /* blocksize=32*nb bits. Key=32*nk bits */
  /* currently nb,bk = 4, 6 or 8          */
  /* key comes as 4*Nk bytes              */
  /* Key Scheduler. Create expanded encryption key */
    int i,j,k,m,N;
    int C1,C2,C3;
    WORD CipherKey[8];
   
    Nb=nb; Nk=nk;

  /* Nr is number of rounds */
    if (Nb>=Nk) Nr=6+Nb;
    else        Nr=6+Nk;

    C1=1;
    if (Nb<8) { C2=2; C3=3; }
    else      { C2=3; C3=4; }

  /* pre-calculate forward and reverse increments */
    for (m=j=0;j<nb;j++,m+=3)
    {
        fi[m]=(j+C1)%nb;
        fi[m+1]=(j+C2)%nb;
        fi[m+2]=(j+C3)%nb;
        ri[m]=(nb+j-C1)%nb;
        ri[m+1]=(nb+j-C2)%nb;
        ri[m+2]=(nb+j-C3)%nb;
    }

    N=Nb*(Nr+1);
   
    for (i=j=0;i<Nk;i++,j+=4)
    {
        CipherKey[i]=pack((BYTE *)&key[j]);
    }
    for (i=0;i<Nk;i++) fkey[i]=CipherKey[i];
    for (j=Nk,k=0;j<N;j+=Nk,k++)
    {
        fkey[j]=fkey[j-Nk]^SubByte(ROTL24(fkey[j-1]))^rco[k];
        if (Nk<=6)
        {
            for (i=1;i<Nk && (i+j)<N;i++)
                fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
        }
        else
        {
            for (i=1;i<4 &&(i+j)<N;i++)
                fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
            if ((j+4)<N) fkey[j+4]=fkey[j+4-Nk]^SubByte(fkey[j+3]);
            for (i=5;i<Nk && (i+j)<N;i++)
                fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
        }

    }

 /* now for the expanded decrypt key in reverse order */

    for (j=0;j<Nb;j++) rkey[j+N-Nb]=fkey[j];
    for (i=Nb;i<N-Nb;i+=Nb)
    {
        k=N-Nb-i;
        for (j=0;j<Nb;j++) rkey[k+j]=InvMixCol(fkey[i+j]);
    }
    for (j=N-Nb;j<N;j++) rkey[j-N+Nb]=fkey[j];
}


/* There is an obvious time/space trade-off possible here.     *
 * Instead of just one ftable[], I could have 4, the other     *
 * 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */

void encrypt(char *buff)
{
    int i,j,k,m;
    WORD a[8],b[8],*x,*y,*t;

    for (i=j=0;i<Nb;i++,j+=4)
    {
        a[i]=pack((BYTE *)&buff[j]);
        a[i]^=fkey[i];
    }
    k=Nb;
    x=a; y=b;

/* State alternates between a and b */
    for (i=1;i<Nr;i++)
    { /* Nr is number of rounds. May be odd. */

/* if Nb is fixed - unroll this next
   loop and hard-code in the values of fi[]  */

        for (m=j=0;j<Nb;j++,m+=3)
        { /* deal with each 32-bit element of the State */
          /* This is the time-critical bit */
            y[j]=fkey[k++]^ftable[(BYTE)x[j]]^
                 ROTL8(ftable[(BYTE)(x[fi[m]]>>8)])^
                 ROTL16(ftable[(BYTE)(x[fi[m+1]]>>16)])^
                 ROTL24(ftable[x[fi[m+2]]>>24]);
        }
        t=x; x=y; y=t;      /* swap pointers */
    }

/* Last Round - unroll if possible */
    for (m=j=0;j<Nb;j++,m+=3)
    {
        y[j]=fkey[k++]^(WORD)fbsub[(BYTE)x[j]]^
             ROTL8((WORD)fbsub[(BYTE)(x[fi[m]]>>8)])^
             ROTL16((WORD)fbsub[(BYTE)(x[fi[m+1]]>>16)])^
             ROTL24((WORD)fbsub[x[fi[m+2]]>>24]);
    }  
    for (i=j=0;i<Nb;i++,j+=4)
    {
        unpack(y[i],(BYTE *)&buff[j]);
        x[i]=y[i]=0;   /* clean up stack */
    }
    return;
}

void decrypt(char *buff)
{
    int i,j,k,m;
    WORD a[8],b[8],*x,*y,*t;

    for (i=j=0;i<Nb;i++,j+=4)
    {
        a[i]=pack((BYTE *)&buff[j]);
        a[i]^=rkey[i];
    }
    k=Nb;
    x=a; y=b;

/* State alternates between a and b */
    for (i=1;i<Nr;i++)
    { /* Nr is number of rounds. May be odd. */

/* if Nb is fixed - unroll this next
   loop and hard-code in the values of ri[]  */

        for (m=j=0;j<Nb;j++,m+=3)
        { /* This is the time-critical bit */
            y[j]=rkey[k++]^rtable[(BYTE)x[j]]^
                 ROTL8(rtable[(BYTE)(x[ri[m]]>>8)])^
                 ROTL16(rtable[(BYTE)(x[ri[m+1]]>>16)])^
                 ROTL24(rtable[x[ri[m+2]]>>24]);
        }
        t=x; x=y; y=t;      /* swap pointers */
    }

/* Last Round - unroll if possible */
    for (m=j=0;j<Nb;j++,m+=3)
    {
        y[j]=rkey[k++]^(WORD)rbsub[(BYTE)x[j]]^
             ROTL8((WORD)rbsub[(BYTE)(x[ri[m]]>>8)])^
             ROTL16((WORD)rbsub[(BYTE)(x[ri[m+1]]>>16)])^
             ROTL24((WORD)rbsub[x[ri[m+2]]>>24]);
    }       
    for (i=j=0;i<Nb;i++,j+=4)
    {
        unpack(y[i],(BYTE *)&buff[j]);
        x[i]=y[i]=0;   /* clean up stack */
    }
    return;
}

int main()
{ /* test driver */
    int i,nb,nk;
    char str[]="abcd1234567890123456789012345678901212345678901234567890123456789012";

    char key[32];
    char block[32];

    gentables();

    strtoHex(str,key);
    hextoStr(key,str);  //just to test these two functions
     printf("Key=     ");
     for (i=0;i<64;i++) printf("%c",str[i]);
     printf("/n");


    for (i=0;i<32;i++) block[i]=i;

    for (nb=4;nb<=8;nb+=2)
        for (nk=4;nk<=8;nk+=2)
    { 
        printf("/nBlock Size= %d bits, Key Size= %d bits/n",nb*32,nk*32);
        gkey(nb,nk,key);
        printf("Plain=   ");
        for (i=0;i<nb*4;i++) printf("%02x",block[i]);
        printf("/n");
        encrypt(block);
        printf("Encrypt= ");
        for (i=0;i<nb*4;i++) printf("%02x",(unsigned char)block[i]);
        printf("/n");
        decrypt(block);
        printf("Decrypt= ");
        for (i=0;i<nb*4;i++) printf("%02x",block[i]);
        printf("/n");
    }
    return 0;
}


 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值