/*@file aes.c
compiled ok with mingGW/VC++ by chinayaosir
*/
#include <stdio.h>
#define BYTE unsigned char /* 8 bits */
#define WORD unsigned long /* 32 bits */
/* rotates x one bit to the left */
#define ROTL(x) (((x)>>7)|((x)<<1))
/* Rotates 32-bit word left by 1, 2 or 3 byte */
#define ROTL8(x) (((x)<<8)|((x)>>24))
#define ROTL16(x) (((x)<<16)|((x)>>16))
#define ROTL24(x) (((x)<<24)|((x)>>8))
/* Fixed Data */
static BYTE InCo[4]={0xB,0xD,0x9,0xE}; /* Inverse Coefficients */
static BYTE fbsub[256];
static BYTE rbsub[256];
static BYTE ptab[256],ltab[256];
static WORD ftable[256];
static WORD rtable[256];
static WORD rco[30];
/* Parameter-dependent data */
int Nk,Nb,Nr;
BYTE fi[24],ri[24];
WORD fkey[120];
WORD rkey[120];
static WORD pack(BYTE *b)
{ /* pack bytes into a 32-bit Word */
return ((WORD)b[3]<<24)|((WORD)b[2]<<16)|((WORD)b[1]<<8)|(WORD)b[0];
}
static void unpack(WORD a,BYTE *b)
{ /* unpack bytes from a word */
b[0]=(BYTE)a;
b[1]=(BYTE)(a>>8);
b[2]=(BYTE)(a>>16);
b[3]=(BYTE)(a>>24);
}
//关于模多项式0x011b的乘10b运算
static BYTE xtime(BYTE a)
{
BYTE b;
if (a&0x80) b=0x1B;
else b=0;
a<<=1;
a^=b;
return a;
}
static BYTE bmul(BYTE x,BYTE y)
{ /* x.y= AntiLog(Log(x) + Log(y)) */
if (x && y) return ptab[(ltab[x]+ltab[y])%255];
else return 0;
}
static WORD SubByte(WORD a)
{
BYTE b[4];
unpack(a,b);
b[0]=fbsub[b[0]];
b[1]=fbsub[b[1]];
b[2]=fbsub[b[2]];
b[3]=fbsub[b[3]];
return pack(b);
}
static BYTE product(WORD x,WORD y)
{ /* dot product of two 4-byte arrays */
BYTE xb[4],yb[4];
unpack(x,xb);
unpack(y,yb);
return bmul(xb[0],yb[0])^bmul(xb[1],yb[1])^bmul(xb[2],yb[2])^bmul(xb[3],yb[3]);
}
static WORD InvMixCol(WORD x)
{ /* matrix Multiplication */
WORD y,m;
BYTE b[4];
m=pack(InCo);
b[3]=product(m,x);
m=ROTL24(m);
b[2]=product(m,x);
m=ROTL24(m);
b[1]=product(m,x);
m=ROTL24(m);
b[0]=product(m,x);
y=pack(b);
return y;
}
BYTE ByteSub(BYTE x)
{
BYTE y=ptab[255-ltab[x]]; /* multiplicative inverse */
x=y; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; x=ROTL(x);
y^=x; y^=0x63;
return y;
}
void gentables(void)
{ /* generate tables */
int i;
BYTE y,b[4];
/* use 3 as primitive root to generate power and log tables */
ltab[0]=0;
ptab[0]=1; ltab[1]=0;
ptab[1]=3; ltab[3]=1;
for (i=2;i<256;i++)
{
ptab[i]=ptab[i-1]^xtime(ptab[i-1]);
ltab[ptab[i]]=i;
}
/* affine transformation:- each bit is xored with itself shifted one bit
仿射变换
*/
fbsub[0]=0x63;
rbsub[0x63]=0;
for (i=1;i<256;i++)
{
y=ByteSub((BYTE)i);
fbsub[i]=y; rbsub[y]=i;
}
for (i=0,y=1;i<30;i++)
{
rco[i]=y;
y=xtime(y);
}
/* calculate forward and reverse tables */
for (i=0;i<256;i++)
{
y=fbsub[i];
b[3]=y^xtime(y); b[2]=y;
b[1]=y; b[0]=xtime(y);
ftable[i]=pack(b);
y=rbsub[i];
b[3]=bmul(InCo[0],y); b[2]=bmul(InCo[1],y);
b[1]=bmul(InCo[2],y); b[0]=bmul(InCo[3],y);
rtable[i]=pack(b);
}
}
void strtoHex(char *str,char *hex)
{
char ch;
int i=0, by = 0;
while(i < 64 && *str) // the maximum key length is 32 bytes(256 bits) and
{ // hence at most 64 hexadecimal digits
ch = toupper(*str++); // process a hexadecimal digit
if(ch >= '0' && ch <= '9')
by = (by << 4) + ch - '0';
else if(ch >= 'A' && ch <= 'F')
by = (by << 4) + ch - 'A' + 10;
else // error if not hexadecimal
{
printf("key must be in hexadecimal notation/n");
exit(0);
}
// store a key byte for each pair of hexadecimal digits
if(i++ & 1)
hex[i / 2 - 1] = by & 0xff;
}
}
void hextoStr(char *hex,char *str)
{
int i=0, by = 0;
while(i < 32 && *hex) // the maximum key length is 32 bytes(256 bits) and
{ // hence at most 64 hexadecimal digits
by = *hex ; // process a hexadecimal digit(high)
by=by>>4 &0x0f;
if(by >= 0 && by <= 9)
*str++ = by + '0';
else if(by >= 0x0A && by <= 0x0F)
*str++ = by - 10+ 'A';
by = *hex++; // process a hexadecimal digit(low)
by=by &0x0f;
if(by >= 0 && by <= 9)
*str++ = by + '0';
else if(by >= 0x0A && by <= 0x0F)
*str++ = by - 10+ 'A';
i++;
}
}
void gkey(int nb,int nk,char *key)
{ /* blocksize=32*nb bits. Key=32*nk bits */
/* currently nb,bk = 4, 6 or 8 */
/* key comes as 4*Nk bytes */
/* Key Scheduler. Create expanded encryption key */
int i,j,k,m,N;
int C1,C2,C3;
WORD CipherKey[8];
Nb=nb; Nk=nk;
/* Nr is number of rounds */
if (Nb>=Nk) Nr=6+Nb;
else Nr=6+Nk;
C1=1;
if (Nb<8) { C2=2; C3=3; }
else { C2=3; C3=4; }
/* pre-calculate forward and reverse increments */
for (m=j=0;j<nb;j++,m+=3)
{
fi[m]=(j+C1)%nb;
fi[m+1]=(j+C2)%nb;
fi[m+2]=(j+C3)%nb;
ri[m]=(nb+j-C1)%nb;
ri[m+1]=(nb+j-C2)%nb;
ri[m+2]=(nb+j-C3)%nb;
}
N=Nb*(Nr+1);
for (i=j=0;i<Nk;i++,j+=4)
{
CipherKey[i]=pack((BYTE *)&key[j]);
}
for (i=0;i<Nk;i++) fkey[i]=CipherKey[i];
for (j=Nk,k=0;j<N;j+=Nk,k++)
{
fkey[j]=fkey[j-Nk]^SubByte(ROTL24(fkey[j-1]))^rco[k];
if (Nk<=6)
{
for (i=1;i<Nk && (i+j)<N;i++)
fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
}
else
{
for (i=1;i<4 &&(i+j)<N;i++)
fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
if ((j+4)<N) fkey[j+4]=fkey[j+4-Nk]^SubByte(fkey[j+3]);
for (i=5;i<Nk && (i+j)<N;i++)
fkey[i+j]=fkey[i+j-Nk]^fkey[i+j-1];
}
}
/* now for the expanded decrypt key in reverse order */
for (j=0;j<Nb;j++) rkey[j+N-Nb]=fkey[j];
for (i=Nb;i<N-Nb;i+=Nb)
{
k=N-Nb-i;
for (j=0;j<Nb;j++) rkey[k+j]=InvMixCol(fkey[i+j]);
}
for (j=N-Nb;j<N;j++) rkey[j-N+Nb]=fkey[j];
}
/* There is an obvious time/space trade-off possible here. *
* Instead of just one ftable[], I could have 4, the other *
* 3 pre-rotated to save the ROTL8, ROTL16 and ROTL24 overhead */
void encrypt(char *buff)
{
int i,j,k,m;
WORD a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4)
{
a[i]=pack((BYTE *)&buff[j]);
a[i]^=fkey[i];
}
k=Nb;
x=a; y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++)
{ /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of fi[] */
for (m=j=0;j<Nb;j++,m+=3)
{ /* deal with each 32-bit element of the State */
/* This is the time-critical bit */
y[j]=fkey[k++]^ftable[(BYTE)x[j]]^
ROTL8(ftable[(BYTE)(x[fi[m]]>>8)])^
ROTL16(ftable[(BYTE)(x[fi[m+1]]>>16)])^
ROTL24(ftable[x[fi[m+2]]>>24]);
}
t=x; x=y; y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3)
{
y[j]=fkey[k++]^(WORD)fbsub[(BYTE)x[j]]^
ROTL8((WORD)fbsub[(BYTE)(x[fi[m]]>>8)])^
ROTL16((WORD)fbsub[(BYTE)(x[fi[m+1]]>>16)])^
ROTL24((WORD)fbsub[x[fi[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4)
{
unpack(y[i],(BYTE *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
void decrypt(char *buff)
{
int i,j,k,m;
WORD a[8],b[8],*x,*y,*t;
for (i=j=0;i<Nb;i++,j+=4)
{
a[i]=pack((BYTE *)&buff[j]);
a[i]^=rkey[i];
}
k=Nb;
x=a; y=b;
/* State alternates between a and b */
for (i=1;i<Nr;i++)
{ /* Nr is number of rounds. May be odd. */
/* if Nb is fixed - unroll this next
loop and hard-code in the values of ri[] */
for (m=j=0;j<Nb;j++,m+=3)
{ /* This is the time-critical bit */
y[j]=rkey[k++]^rtable[(BYTE)x[j]]^
ROTL8(rtable[(BYTE)(x[ri[m]]>>8)])^
ROTL16(rtable[(BYTE)(x[ri[m+1]]>>16)])^
ROTL24(rtable[x[ri[m+2]]>>24]);
}
t=x; x=y; y=t; /* swap pointers */
}
/* Last Round - unroll if possible */
for (m=j=0;j<Nb;j++,m+=3)
{
y[j]=rkey[k++]^(WORD)rbsub[(BYTE)x[j]]^
ROTL8((WORD)rbsub[(BYTE)(x[ri[m]]>>8)])^
ROTL16((WORD)rbsub[(BYTE)(x[ri[m+1]]>>16)])^
ROTL24((WORD)rbsub[x[ri[m+2]]>>24]);
}
for (i=j=0;i<Nb;i++,j+=4)
{
unpack(y[i],(BYTE *)&buff[j]);
x[i]=y[i]=0; /* clean up stack */
}
return;
}
int main()
{ /* test driver */
int i,nb,nk;
char str[]="abcd1234567890123456789012345678901212345678901234567890123456789012";
char key[32];
char block[32];
gentables();
strtoHex(str,key);
hextoStr(key,str); //just to test these two functions
printf("Key= ");
for (i=0;i<64;i++) printf("%c",str[i]);
printf("/n");
for (i=0;i<32;i++) block[i]=i;
for (nb=4;nb<=8;nb+=2)
for (nk=4;nk<=8;nk+=2)
{
printf("/nBlock Size= %d bits, Key Size= %d bits/n",nb*32,nk*32);
gkey(nb,nk,key);
printf("Plain= ");
for (i=0;i<nb*4;i++) printf("%02x",block[i]);
printf("/n");
encrypt(block);
printf("Encrypt= ");
for (i=0;i<nb*4;i++) printf("%02x",(unsigned char)block[i]);
printf("/n");
decrypt(block);
printf("Decrypt= ");
for (i=0;i<nb*4;i++) printf("%02x",block[i]);
printf("/n");
}
return 0;
}