Series of RCNN

本文介绍了一种基于图论的图像分割方法,该方法通过构建图像的图表示来进行高效的分割处理。此外,还讨论了一个针对目标检测和分割的系统R-CNN,它利用卷积神经网络从候选区域提取特征,并通过线性SVM进行分类。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Title

  • Efficient Graph-Based Image Segmentation

Link

  • International Journal of Computer Vision 59(2), 167-181,2004

Abstract

this research belong to image segmentation; its principle is a graph-based representation of the image.

Contents

  • Graph
    • G = (V,E). V and E represent vertices and edges respectively
    • internal difference.laegest weight in the minimum spanning tree of the component MST(C,E): Int(C) = max w(e)

Reference Bolg

Title

  • Rich feature hierarchies for Accurate Object Detection and Segmentation

Link

  • arXiv:1311.2524v5

Abstract

  • this paper aim to object detection. it has two key insights: 1) they apply convolutional neural networks to bottom-up region proposals in order to localize and segment objects. 2) fine-tuning will make a significant performance boost. They call their methods R-CNN

Contents

their system has three modules: the first generate category-independent region proposals. the second is a CNN that extracts a fixed-length feature vector from each region. the third is a set of class-specific linear SVMs.

转载于:https://my.oschina.net/u/3993524/blog/3076141

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值