1.处理点云数据LocalTrajectoryBuilder2D::AddRangeData
函数实现的功能:
1:依据分发出来的点云中每个点的时间(time),使用位姿推断器推断time时刻tracking坐标系的位姿。
2:依据1中推断出来的位姿将点云中的点转换到local坐标系下。
3:将传入的点云的origins坐标转到 local slam 坐标系下,
做运动畸变的去除相对于tracking_frame的hit坐标 转成 local坐标系下的坐标
两点相减得到距离 在激光有效范围内 的点保存起来。(此时此刻点云中的点到其对应的原点距离,距离超过最大值(传感器最大值),要做特别的处理)。
4:将3得到点云做自适应体素滤波,并做匹配。
5:根据匹配结果将点云写入submap
6:把匹配得到的位姿加入位姿推断器
/**
* @brief 处理点云数据, 进行扫描匹配, 将点云写成地图
*
* @param[in] sensor_id 点云数据对应的话题名称
* @param[in] unsynchronized_data 传入的点云数据
* @return std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult> 匹配后的结果
*/
std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult>
LocalTrajectoryBuilder2D::AddRangeData(
const std::string& sensor_id,
const sensor::TimedPointCloudData& unsynchronized_data) {
// Step: 1 进行多个雷达点云数据的时间同步, 点云的坐标是相对于tracking_frame的
auto synchronized_data =
range_data_collator_.AddRangeData(sensor_id, unsynchronized_data);
if (synchronized_data.ranges.empty()) {
LOG(INFO) << "Range data collator filling buffer.";
return nullptr;
}
const common::Time& time = synchronized_data.time;
// Initialize extrapolator now if we do not ever use an IMU.
// 如果不用imu, 就在雷达这初始化位姿推测器
if (!options_.use_imu_data()) {
InitializeExtrapolator(time);
}
if (extrapolator_ == nullptr) {
// Until we've initialized the extrapolator with our first IMU message, we
// cannot compute the orientation of the rangefinder.
LOG(INFO) << "Extrapolator not yet initialized.";
return nullptr;
}
CHECK(!synchronized_data.ranges.empty());
// TODO(gaschler): Check if this can strictly be 0.
CHECK_LE(synchronized_data.ranges.back().point_time.time, 0.f);
// 计算第一个点的时间
const common::Time time_first_point =
time +
common::FromSeconds(synchronized_data.ranges.front().point_time.time);
// 只有在extrapolator_初始化时, GetLastPoseTime()是common::Time::min()
if (time_first_point < extrapolator_->GetLastPoseTime()) {
LOG(INFO) << "Extrapolator is still initializing.";
return nullptr;
}
std::vector<transform::Rigid3f> range_data_poses;
range_data_poses.reserve(synchronized_data.ranges.size());
bool warned = false;
// 预测得到每一个时间点的位姿
for (const auto& range : synchronized_data.ranges) {
common::Time time_point = time + common::FromSeconds(range.point_time.time);
// 如果该时间比上次预测位姿的时间还要早,说明这个点的时间戳往回走了, 就报错
if (time_point < extrapolator_->GetLastExtrapolatedTime()) {
// 一个循环只报一次错
if (!warned) {
LOG(ERROR)
<< "Timestamp of individual range data point jumps backwards from "
<< extrapolator_->GetLastExtrapolatedTime() << " to " << time_point;
warned = true;
}
time_point = extrapolator_->GetLastExtrapolatedTime();
}
// Step: 2 预测出 每个点的时间戳时刻, tracking frame 在 local slam 坐标系下的位姿
range_data_poses.push_back(
extrapolator_->ExtrapolatePose(time_point).cast<float>());
}
if (num_accumulated_ == 0) {
// 'accumulated_range_data_.origin' is uninitialized until the last
// accumulation.
accumulated_range_data_ = sensor::RangeData{{}, {}, {}};
}
// Drop any returns below the minimum range and convert returns beyond the
// maximum range into misses.
// 对每个数据点进行处理
for (size_t i = 0; i < synchronized_data.ranges.size(); ++i) {
// 获取在tracking frame 下点的坐标
const sensor::TimedRangefinderPoint& hit =
synchronized_data.ranges[i].point_time;
// 将点云的origins坐标转到 local slam 坐标系下
const Eigen::Vector3f origin_in_local =
range_data_poses[i] *
synchronized_data.origins.at(synchronized_data.ranges[i].origin_index);
// Step: 3 运动畸变的去除, 将相对于tracking_frame的hit坐标 转成 local坐标系下的坐标
sensor::RangefinderPoint hit_in_local =
range_data_poses[i] * sensor::ToRangefinderPoint(hit);
// 计算这个点的距离, 这里用的是去畸变之后的点的距离
const Eigen::Vector3f delta = hit_in_local.position - origin_in_local;
const float range = delta.norm();
// param: min_range max_range
if (range >= options_.min_range()) {
if (range <= options_.max_range()) {
// 在这里可以看到, returns里保存的是local slam下的去畸变之后的点的坐标
accumulated_range_data_.returns.push_back(hit_in_local);
} else {
// Step: 4 超过max_range时的处理: 用一个距离进行替代, 并放入misses里
hit_in_local.position =
origin_in_local +
// param: missing_data_ray_length, 是个比例, 不是距离
options_.missing_data_ray_length() / range * delta;
accumulated_range_data_.misses.push_back(hit_in_local);
}
}
} // end for
// 有一帧有效的数据了
++num_accumulated_;
// param: num_accumulated_range_data 几帧有效的点云数据进行一次扫描匹配
if (num_accumulated_ >= options_.num_accumulated_range_data()) {
// 计算2次有效点云数据的的时间差
const common::Time current_sensor_time = synchronized_data.time;
absl::optional<common::Duration> sensor_duration;
if (last_sensor_time_.has_value()) {
sensor_duration = current_sensor_time - last_sensor_time_.value();
}
last_sensor_time_ = current_sensor_time;
// 重置变量
num_accumulated_ = 0;
// 获取机器人当前姿态
const transform::Rigid3d gravity_alignment = transform::Rigid3d::Rotation(
extrapolator_->EstimateGravityOrientation(time));
// TODO(gaschler): This assumes that 'range_data_poses.back()' is at time
// 'time'.
// 以最后一个点的时间戳估计出的坐标为这帧数据的原点
accumulated_range_data_.origin = range_data_poses.back().translation();
return AddAccumulatedRangeData(
time,
// 将点云变换到local原点处, 且姿态为0
TransformToGravityAlignedFrameAndFilter(
gravity_alignment.cast<float>() * range_data_poses.back().inverse(),
accumulated_range_data_),
gravity_alignment, sensor_duration);
}
return nullptr;
}
预测出 每个点的时间戳时刻, tracking frame 在 local slam 坐标系下的位姿
extrapolator_->ExtrapolatePose(time_point).cast<float>());
// 预测得到time时刻 tracking frame 在 local 坐标系下的位姿
transform::Rigid3d PoseExtrapolator::ExtrapolatePose(const common::Time time) {
const TimedPose& newest_timed_pose = timed_pose_queue_.back();
CHECK_GE(time, newest_timed_pose.time);
// 如果本次预测时间与上次计算时间相同 就不再重复计算
if (cached_extrapolated_pose_.time != time) {
// 预测tracking frame在local坐标系下time时刻的位置
const Eigen::Vector3d translation =
ExtrapolateTranslation(time) + newest_timed_pose.pose.translation();
// 预测tracking frame在local坐标系下time时刻的姿态
const Eigen::Quaterniond rotation =
newest_timed_pose.pose.rotation() *
ExtrapolateRotation(time, extrapolation_imu_tracker_.get());
cached_extrapolated_pose_ =
TimedPose{time, transform::Rigid3d{translation, rotation}};
}
return cached_extrapolated_pose_.pose;
}
先进行点云的旋转与z方向的滤波, 然后再进行体素滤波减少数据量
/**
* @brief 先进行点云的旋转与z方向的滤波, 然后再进行体素滤波减少数据量
*
* @param[in] transform_to_gravity_aligned_frame 将点云变换到原点处, 且姿态为0的坐标变换
* @param[in] range_data 传入的点云
* @return sensor::RangeData 处理后的点云 拷贝
*/
sensor::RangeData
LocalTrajectoryBuilder2D::TransformToGravityAlignedFrameAndFilter(
const transform::Rigid3f& transform_to_gravity_aligned_frame,
const sensor::RangeData& range_data) const {
// Step: 5 将原点位于机器人当前位姿处的点云 转成 原点位于local坐标系原点处的点云, 再进行z轴上的过滤
const sensor::RangeData cropped =
sensor::CropRangeData(sensor::TransformRangeData(
range_data, transform_to_gravity_aligned_frame),
options_.min_z(), options_.max_z()); // param: min_z max_z
// Step: 6 对点云进行体素滤波
return sensor::RangeData{
cropped.origin,
sensor::VoxelFilter(cropped.returns, options_.voxel_filter_size()), // param: voxel_filter_size
sensor::VoxelFilter(cropped.misses, options_.voxel_filter_size())};
}
进行扫描匹配, 将点云写入地图
/**
* @brief 进行扫描匹配, 将点云写入地图
*
* @param[in] time 点云的时间戳
* @param[in] gravity_aligned_range_data 原点位于local坐标系原点处的点云
* @param[in] gravity_alignment 机器人当前姿态
* @param[in] sensor_duration 2帧点云数据的时间差
* @return std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult>
*/
std::unique_ptr<LocalTrajectoryBuilder2D::MatchingResult>
LocalTrajectoryBuilder2D::AddAccumulatedRangeData(
const common::Time time,
const sensor::RangeData& gravity_aligned_range_data,
const transform::Rigid3d& gravity_alignment,
const absl::optional<common::Duration>& sensor_duration) {
// 如果处理完点云之后数据为空, 就报错. 使用单线雷达时不要设置min_z
if (gravity_aligned_range_data.returns.empty()) {
LOG(WARNING) << "Dropped empty horizontal range data.";
return nullptr;
}
// Computes a gravity aligned pose prediction.
// 进行位姿的预测, 先验位姿
const transform::Rigid3d non_gravity_aligned_pose_prediction =
extrapolator_->ExtrapolatePose(time);
// 将三维位姿先旋转到姿态为0, 再取xy坐标将三维位姿转成二维位姿
const transform::Rigid2d pose_prediction = transform::Project2D(
non_gravity_aligned_pose_prediction * gravity_alignment.inverse());
// Step: 7 对 returns点云 进行自适应体素滤波,返回的点云的数据类型是PointCloud
const sensor::PointCloud& filtered_gravity_aligned_point_cloud =
sensor::AdaptiveVoxelFilter(gravity_aligned_range_data.returns,
options_.adaptive_voxel_filter_options());
if (filtered_gravity_aligned_point_cloud.empty()) {
return nullptr;
}
// local map frame <- gravity-aligned frame
// 扫描匹配, 进行点云与submap的匹配
std::unique_ptr<transform::Rigid2d> pose_estimate_2d =
ScanMatch(time, pose_prediction, filtered_gravity_aligned_point_cloud);
if (pose_estimate_2d == nullptr) {
LOG(WARNING) << "Scan matching failed.";
return nullptr;
}
// 将二维坐标旋转回之前的姿态
const transform::Rigid3d pose_estimate =
transform::Embed3D(*pose_estimate_2d) * gravity_alignment;
// 校准位姿估计器
extrapolator_->AddPose(time, pose_estimate);
// Step: 8 将 原点位于local坐标系原点处的点云 变换成 原点位于匹配后的位姿处的点云
sensor::RangeData range_data_in_local =
TransformRangeData(gravity_aligned_range_data,
transform::Embed3D(pose_estimate_2d->cast<float>()));
// 将校正后的雷达数据写入submap
std::unique_ptr<InsertionResult> insertion_result = InsertIntoSubmap(
time, range_data_in_local, filtered_gravity_aligned_point_cloud,
pose_estimate, gravity_alignment.rotation());
// 计算耗时
const auto wall_time = std::chrono::steady_clock::now();
if (last_wall_time_.has_value()) {
const auto wall_time_duration = wall_time - last_wall_time_.value();
kLocalSlamLatencyMetric->Set(common::ToSeconds(wall_time_duration));
if (sensor_duration.has_value()) {
kLocalSlamRealTimeRatio->Set(common::ToSeconds(sensor_duration.value()) /
common::ToSeconds(wall_time_duration));
}
}
// 计算cpu耗时
const double thread_cpu_time_seconds = common::GetThreadCpuTimeSeconds();
if (last_thread_cpu_time_seconds_.has_value()) {
const double thread_cpu_duration_seconds =
thread_cpu_time_seconds - last_thread_cpu_time_seconds_.value();
if (sensor_duration.has_value()) {
kLocalSlamCpuRealTimeRatio->Set(
common::ToSeconds(sensor_duration.value()) /
thread_cpu_duration_seconds);
}
}
last_wall_time_ = wall_time;
last_thread_cpu_time_seconds_ = thread_cpu_time_seconds;
// 返回结果
return absl::make_unique<MatchingResult>(
MatchingResult{time, pose_estimate, std::move(range_data_in_local),
std::move(insertion_result)});
}