RF/GBDT/XGBoost/LightGBM简单总结(完结)

阅读目录

这四种都是非常流行的集成学习(Ensemble Learning)方式,在本文简单总结一下它们的原理和使用方法.

回到顶部

Random Forest(随机森林):

  • 随机森林属于Bagging,也就是有放回抽样,多数表决或简单平均.Bagging之间的基学习器是并列生成的.RF就是以决策树为基学习器的Bagging,进一步在决策树的训练过程中引入了随机特征选择,这会使单棵树的偏差增加,但总体而言有利于集成.RF的每个基学习器只使用了训练集中约63.2%的样本,剩下的样本可以用作袋外估计.
  • 一般使用的
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值