stanford-NLP-CLASS1课堂笔记

本文介绍了自然语言处理(NLP)的应用场景和技术分类,详细探讨了信息抽取、情感分析及机器翻译等应用,并分析了NLP面临的难题如歧义性和非标准英语等问题。此外,还讨论了解决这些问题所需的语言知识和世界知识。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

CLASS1 — NLP INTRODUCTION SUMMARY

Applications of NLP
  1. Information Extraction 信息抽取
  2. Information Extraction & Sentiment Analysis 信息抽取与情感分析
  3. Machine Translation


Three kind of language technology
A. mostly solved
  1. spam detection
  2. part-of-speech(POS) tagging词性标签
  3. named entity recognition(NER)
B. making good progress
  1. sentiment analysis
  2. coreference resolution
  3. word sense disambiguous词义消歧(WSD)
C. still really hard
  1. question answering(QA)
  2. paraphrase反义句
  3. summarization
  4. dialog

What makes NLP hard?
Ambiguity — crash blossoms

Why else is NL understanding difficult?
  1. non-standard English
  2. segmentation issue
  3. idioms
  4. neologisms新词
  5. world knowledge
  6. tricky entity names

What tools do we need?
  1. knowledge about language
  2. knowledge about the world
  3. a way to combine knowledge sources

How we generally do this?
  • probabilities models built from language data
  • rough text features can often do half the job.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值