kafka批次写入
批次写入kafka,该批次消息属于同一个主题同一分区,可以将该批次消息压缩处理,减少网络传输,但带来更多计算。
kafka消息模式
JSON,XML,Apache avro...
kafka主题分类消息
主题如果数据库中的表,或者文件系统中的文件夹,一个主题可以分为多个分区(在整个主题消息不能保证有序,在一个分区可以保证),
一个分区就是一个提交日志,最新消息追加到分区尾部,通过消息分区实现伸缩性和数据冗余,一个主题可以横跨多个主机。
我们通常会使用流这个词来描述 Kaflca 这类系统的数据。很多时候, 人们把一个主题的数 据看成一个流,不管它有多少个分区。
流是一组从生产者移动到消费者的数据。当我们讨 论流式处理时,一般都是这样描述消息的。 Kaflca Streams、 Apache Samza
和 Storm 这些框 架以实时的方式处理消息, 也就是所谓的流式处理。我们可以将流式处理与离线处理进行 比较,
比如 Hadoop 就是被设计用于在稍后某个时刻处理大量的数据
kafka生产者和消费者
它们被分为两种基本类型: 生产者和消费者。除此之外,还有其他高级客户端 API用于数据集成的 Kaflca Connect API
和用于流式处理 的 Kaflca Streams。这些高级客户端 API 使用生产者和消费者作为内部组件,提供了高级的 功能。
生产者:发布者,写入者,一个消息会被发布到一个特定的主题上。生产者在默认情况下把消息均衡地分布到 主题的所有分区上,
而并不关心特定消息会被写到哪个分区。不过,在某些情况下,生产者会把消息直接写到指定的分区。这通常是通过消息键和分区器来实现的,
分区器为键生 成一个散列值,并将其映射到指定的分区上。这样可以保证包含同一个键的消息会被写到 同一个分区上。生产者也可以使用自定义的分区器,
根据不同的业务规则将消息映射到分区
消费者:订阅者,读者,消费者订 阅一个或多个主题,并按照消息生成的顺序读取它们。消费者通过检查消息的偏移盘来区分已经读取过的消息。
偏移量是另一种元数据,它是一个不断递增的整数值,在创建消息 时, Kafka 会把它添加到消息里。在给定的分区里,每个悄息的偏移量都是唯一的。
消费 者把每个分区最后读取的悄息偏移量保存在 Zookeeper 或 Kafka 上,如果悄费者关闭或重 启,它的读取状态不会丢失
消费者群:一组消费者,会有一个或多个消费者共同读取一个主题。 群 组保证每个分区只能被一个消费者使用。
kafka支持多个生产者多个消费者,一个主题为一个生产者绑定多个消费者群
kafka配置:
#唯一标识在集群中的ID,要求是正数。
broker.id=0
#服务端口,默认9092
port=9092
#监听地址,不设为所有地址
host.name=node1
# 处理网络请求的最大线程数
num.network.threads=2
# 处理磁盘I/O的线程数
num.io.threads=8
# 一些后台线程数
background.threads = 4
# 等待IO线程处理的请求队列最大数
queued.max.requests = 500
# socket的发送缓冲区(SO_SNDBUF)
socket.send.buffer.bytes=1048576
# socket的接收缓冲区 (SO_RCVBUF)
socket.receive.buffer.bytes=1048576
# socket请求的最大字节数。为了防止内存溢出,message.max.bytes必然要小于
socket.request.max.bytes = 104857600
############################# Topic #############################
# 每个topic的分区个数,更多的partition会产生更多的segment file
num.partitions=2
# 是否允许自动创建topic ,若是false,就需要通过命令创建topic
auto.create.topics.enable =true
# 一个topic ,默认分区的replication个数 ,不能大于集群中broker的个数。
default.replication.factor =1
# 消息体的最大大小,单位是字节
message.max.bytes = 1000000
############################# ZooKeeper #############################
# Zookeeper quorum设置。如果有多个使用逗号分割
zookeeper.connect=node1:2181,node2:2181,node3:2181
# 连接zk的超时时间
zookeeper.connection.timeout.ms=1000000
# ZooKeeper集群中leader和follower之间的同步实际
zookeeper.sync.time.ms = 2000
############################# Log #############################
#日志存放目录,多个目录使用逗号分割
log.dirs=/var/log/kafka
# 当达到下面的消息数量时,会将数据flush到日志文件中。默认10000
#log.flush.interval.messages=10000
# 当达到下面的时间(ms)时,执行一次强制的flush操作。interval.ms和interval.messages无论哪个达到,都会flush。默认3000ms
#log.flush.interval.ms=1000
# 检查是否需要将日志flush的时间间隔
log.flush.scheduler.interval.ms = 3000
# 日志清理策略(delete|compact)
log.cleanup.policy = delete
# 日志保存时间 (hours|minutes),默认为7天(168小时)。超过这个时间会根据policy处理数据。bytes和minutes无论哪个先达到都会触发。
log.retention.hours=168
# 日志数据存储的最大字节数。超过这个时间会根据policy处理数据。
#log.retention.bytes=1073741824
# 控制日志segment文件的大小,超出该大小则追加到一个新的日志segment文件中(-1表示没有限制)
log.segment.bytes=536870912
# 当达到下面时间,会强制新建一个segment
log.roll.hours = 24*7
# 日志片段文件的检查周期,查看它们是否达到了删除策略的设置(log.retention.hours或log.retention.bytes)
log.retention.check.interval.ms=60000
# 是否开启压缩
log.cleaner.enable=false
# 对于压缩的日志保留的最长时间
log.cleaner.delete.retention.ms = 1 day
# 对于segment日志的索引文件大小限制
log.index.size.max.bytes = 10 * 1024 * 1024
#y索引计算的一个缓冲区,一般不需要设置。
log.index.interval.bytes = 4096
############################# replica #############################
# partition management controller 与replicas之间通讯的超时时间
controller.socket.timeout.ms = 30000
# controller-to-broker-channels消息队列的尺寸大小
controller.message.queue.size=10
# replicas响应leader的最长等待时间,若是超过这个时间,就将replicas排除在管理之外
replica.lag.time.max.ms = 10000
# 是否允许控制器关闭broker ,若是设置为true,会关闭所有在这个broker上的leader,并转移到其他broker
controlled.shutdown.enable = false
# 控制器关闭的尝试次数
controlled.shutdown.max.retries = 3
# 每次关闭尝试的时间间隔
controlled.shutdown.retry.backoff.ms = 5000
# 如果relicas落后太多,将会认为此partition relicas已经失效。而一般情况下,因为网络延迟等原因,总会导致replicas中消息同步滞后。如果消息严重滞后,leader将认为此relicas网络延迟较大或者消息吞吐能力有限。在broker数量较少,或者网络不足的环境中,建议提高此值.
replica.lag.max.messages = 4000
#leader与relicas的socket超时时间
replica.socket.timeout.ms= 30 * 1000
# leader复制的socket缓存大小
replica.socket.receive.buffer.bytes=64 * 1024
# replicas每次获取数据的最大字节数
replica.fetch.max.bytes = 1024 * 1024
# replicas同leader之间通信的最大等待时间,失败了会重试
replica.fetch.wait.max.ms = 500
# 每一个fetch操作的最小数据尺寸,如果leader中尚未同步的数据不足此值,将会等待直到数据达到这个大小
replica.fetch.min.bytes =1
# leader中进行复制的线程数,增大这个数值会增加relipca的IO
num.replica.fetchers = 1
# 每个replica将最高水位进行flush的时间间隔
replica.high.watermark.checkpoint.interval.ms = 5000
# 是否自动平衡broker之间的分配策略
auto.leader.rebalance.enable = false
# leader的不平衡比例,若是超过这个数值,会对分区进行重新的平衡
leader.imbalance.per.broker.percentage = 10
# 检查leader是否不平衡的时间间隔
leader.imbalance.check.interval.seconds = 300
# 客户端保留offset信息的最大空间大小
offset.metadata.max.bytes = 1024
#############################Consumer #############################
# Consumer端核心的配置是group.id、zookeeper.connect
# 决定该Consumer归属的唯一组ID,By setting the same group id multiple processes indicate that they are all part of the same consumer group.
group.id
# 消费者的ID,若是没有设置的话,会自增
consumer.id
# 一个用于跟踪调查的ID ,最好同group.id相同
client.id = <group_id>
# 对于zookeeper集群的指定,必须和broker使用同样的zk配置
zookeeper.connect=node1:2182,node2:2182,ndoe3:2182
# zookeeper的心跳超时时间,超过这个时间就认为是无效的消费者
zookeeper.session.timeout.ms = 6000
# zookeeper的等待连接时间
zookeeper.connection.timeout.ms = 6000
# zookeeper的follower同leader的同步时间
zookeeper.sync.time.ms = 2000
# 当zookeeper中没有初始的offset时,或者超出offset上限时的处理方式 。
# smallest :重置为最小值
# largest:重置为最大值
# anything else:抛出异常给consumer
auto.offset.reset = largest
/*
kafka + zookeeper,当消息被消费时,会向zk提交当前groupId的consumer消费的offset信息,当consumer再次启动将会从此offset开始继续消费.
在consumter端配置文件中(或者是ConsumerConfig类参数)有个"autooffset.reset"(在kafka 0.8版本中为auto.offset.reset),有2个合法的值"largest"/"smallest",默认为"largest",此配置参数表示当此groupId下的消费者,在ZK中没有offset值时(比如新的groupId,或者是zk数据被清空),consumer应该从哪个offset开始消费.
1、largest表示接受接收最大的offset(即最新消息),
2、smallest表示最小offset,即从topic的开始位置消费所有消息.
*/
# socket的超时时间,实际的超时时间为max.fetch.wait + socket.timeout.ms.
socket.timeout.ms= 30 * 1000
# socket的接收缓存空间大小
socket.receive.buffer.bytes=64 * 1024
#从每个分区fetch的消息大小限制
fetch.message.max.bytes = 1024 * 1024
# true时,Consumer会在消费消息后将offset同步到zookeeper,这样当Consumer失败后,新的consumer就能从zookeeper获取最新的offset
auto.commit.enable = true ,项目里用false 不知道是什么原因
# 自动提交的时间间隔
auto.commit.interval.ms = 60 * 1000
# 用于消费的最大数量的消息块缓冲大小,每个块可以等同于fetch.message.max.bytes中数值
queued.max.message.chunks = 10
# 当有新的consumer加入到group时,将尝试reblance,将partitions的消费端迁移到新的consumer中, 该设置是尝试的次数
rebalance.max.retries = 4
# 每次reblance的时间间隔
rebalance.backoff.ms = 2000
# 每次重新选举leader的时间
refresh.leader.backoff.ms
# server发送到消费端的最小数据,若是不满足这个数值则会等待直到满足指定大小。默认为1表示立即接收。
fetch.min.bytes = 1
# 若是不满足fetch.min.bytes时,等待消费端请求的最长等待时间
fetch.wait.max.ms = 100
# 如果指定时间内没有新消息可用于消费,就抛出异常,默认-1表示不受限
consumer.timeout.ms = -1
#############################Producer#############################
# 核心的配置包括:
# metadata.broker.list
# request.required.acks
# producer.type
# serializer.class
# 消费者获取消息元信息(topics, partitions and replicas)的地址,配置格式是:host1:port1,host2:port2,也可以在外面设置一个vip
metadata.broker.list
#消息的确认模式
# 0:不保证消息的到达确认,只管发送,低延迟但是会出现消息的丢失,在某个server失败的情况下,有点像TCP
# 1:发送消息,并会等待leader 收到确认后,一定的可靠性
# -1:发送消息,等待leader收到确认,并进行复制操作后,才返回,最高的可靠性
request.required.acks = 0
# 消息发送的最长等待时间
request.timeout.ms = 10000
# socket的缓存大小
send.buffer.bytes=100*1024
# key的序列化方式,若是没有设置,同serializer.class
key.serializer.class
# 分区的策略,默认是取模
partitioner.class=kafka.producer.DefaultPartitioner
# 消息的压缩模式,默认是none,可以有gzip和snappy
compression.codec = none
# 可以针对默写特定的topic进行压缩
compressed.topics=null
# 消息发送失败后的重试次数
message.send.max.retries = 3
# 每次失败后的间隔时间
retry.backoff.ms = 100
# 生产者定时更新topic元信息的时间间隔 ,若是设置为0,那么会在每个消息发送后都去更新数据
topic.metadata.refresh.interval.ms = 600 * 1000
# 用户随意指定,但是不能重复,主要用于跟踪记录消息
client.id=""
# 异步模式下缓冲数据的最大时间。例如设置为100则会集合100ms内的消息后发送,这样会提高吞吐量,但是会增加消息发送的延时
queue.buffering.max.ms = 5000
# 异步模式下缓冲的最大消息数,同上
queue.buffering.max.messages = 10000
# 异步模式下,消息进入队列的等待时间。若是设置为0,则消息不等待,如果进入不了队列,则直接被抛弃
queue.enqueue.timeout.ms = -1
# 异步模式下,每次发送的消息数,当queue.buffering.max.messages或queue.buffering.max.ms满足条件之一时producer会触发发送。
batch.num.messages=200
转载于:https://my.oschina.net/xppba/blog/3083915
1461

被折叠的 条评论
为什么被折叠?



