LeetCode 486. Predict the Winner

本文介绍了一种利用动态规划解决玩家游戏得分预测问题的方法。通过构建动态规划矩阵,预测在给定分数数组的情况下,玩家1是否能赢得比赛。文章详细解释了动态规划状态转移方程的设计,并给出了实现代码。

【题目】

Given an array of scores that are non-negative integers. Player 1 picks one of the numbers from either end of the array followed by the player 2 and then player 1 and so on. Each time a player picks a number, that number will not be available for the next player. This continues until all the scores have been chosen. The player with the maximum score wins.

Given an array of scores, predict whether player 1 is the winner. You can assume each player plays to maximize his score.

Example 1:

Input: [1, 5, 2]
Output: False
Explanation: Initially, player 1 can choose between 1 and 2. 
If he chooses 2 (or 1), then player 2 can choose from 1 (or 2) and 5. If player 2 chooses 5, then player 1 will be left with 1 (or 2).
So, final score of player 1 is 1 + 2 = 3, and player 2 is 5.
Hence, player 1 will never be the winner and you need to return False.

Example 2:

Input: [1, 5, 233, 7]
Output: True
Explanation: Player 1 first chooses 1. Then player 2 have to choose between 5 and 7. No matter which number player 2 choose, player 1 can choose 233.
Finally, player 1 has more score (234) than player 2 (12), so you need to return True representing player1 can win.

Note:

  1. 1 <= length of the array <= 20.
  2. Any scores in the given array are non-negative integers and will not exceed 10,000,000.
  3. If the scores of both players are equal, then player 1 is still the winner.

【题解】

 这是一道动态规划的题目,解题思路是参考网上大神而来。

dp[i][j] 表示能够在i到j之间获得的所有数字之和的最大值,目标是第一个人能否在0到n-1之间的所有数字中取得数字之和大于数组所有元素之和的1/2

dp[i][j]表示第一个人能够从i到j之间获取的所有数字之和的最大值,那么dp[i+1][j]表示第二个人能够在i-1到j之间获取的所有数字之和的最大值,dp[i][j-1]表示第二个人能够在i到j-1之间获取的所有数字之和的最大值

sum[i+1][j] - dp[i+1][j]表示第一个人取第i个元素以后,能够在i+1到j之间获取子数组之和的最大值

sum[i][j-1] - dp[i][j-1]标识第一个人取第j个元素以后,能够在i到j-1之间获取子数组之和的最大值



由于dp[i][j]表示每个人都试图获取当前下标i到j之间字数组之和最大值,因此

当第一个人取第i个元素之后,第二个人也在试图获取i+1到j之间的子数组之和最大dp[i+1][j],此时第一个人能够在i到j之间获取的最终子数组之和为

dp[i][j] = nums[i] + sum[i+1][j] - dp[i+1][j] 
同理,当第一个人取第j个元素之后,有

dp[i][j] = nums[j] + sum[i][j-1] - dp[i][j-1]

动态转移方程如下:

当第一个人获取第i个元素时,dp[i][j] = nums[i] + sum[i+1][j] - dp[i+1][j] = dp_left

当第一个人获取第j个元素时,dp[i][j] = nums[j] + sum[i][j-1] - dp[i][j-1] = dp_right

第一个人想获胜,因此dp[i][j] = max(dp_left, dp_right)

当i == j时,只有一种选择,dp[i][j] = nums[i]

当i == j-1 时,只有两种选择,dp[i][j] = max(nums[i], nums[j])

i到j之间的数组之和可以表示为sum[i][j] = sum[0][j] - sum[0][i-1] = sum(j) - sum(i-1)

【代码】

    bool PredictTheWinner(vector<int>& nums) {
        vector<std::vector<int> > dp(nums.size(), std::vector<int>(nums.size()));
        vector<int> prefix_sum(nums.size()+1);
        prefix_sum[0] = 0;

        for (int i = 0; i < nums.size(); ++i)
            prefix_sum[i+1] = prefix_sum[i] + nums[i];

        for (int len = 1; len <= nums.size(); ++len) {
            for(int lhs = 0; lhs + len - 1 < nums.size(); ++lhs) {
                int rhs = lhs + len - 1;
                if (lhs == rhs)
                    dp[lhs][rhs] = nums[lhs];
                else if(lhs == rhs - 1)
                    dp[lhs][rhs] = std::max(nums[lhs], nums[rhs]);
                else {
                    int dp_left = nums[lhs] + prefix_sum[rhs+1] - prefix_sum[lhs+1] - dp[lhs+1][rhs];
                    int dp_right = nums[rhs] + prefix_sum[rhs] - prefix_sum[lhs] - dp[lhs][rhs-1];
                    dp[lhs][rhs] = std::max(dp_left, dp_right);
                }
            }
        }
        return 2 * dp[0][nums.size()-1] >= prefix_sum.back();
    }



内容概要:本文围绕EKF SLAM(扩展卡尔曼滤波同步定位与地图构建)的性能展开多项对比实验研究,重点分析在稀疏与稠密landmark环境下、预测与更新步骤同时进行与非同时进行的情况下的系统性能差异,并进一步探讨EKF SLAM在有色噪声干扰下的鲁棒性表现。实验考虑了不确定性因素的影响,旨在评估不同条件下算法的定位精度与地图构建质量,为实际应用中EKF SLAM的优化提供依据。文档还提及多智能体系统在遭受DoS攻击下的弹性控制研究,但核心内容聚焦于SLAM算法的性能测试与分析。; 适合人群:具备一定机器人学、状态估计或自动驾驶基础知识的科研人员及工程技术人员,尤其是从事SLAM算法研究或应用开发的硕士、博士研究生和相关领域研发人员。; 使用场景及目标:①用于比较EKF SLAM在不同landmark密度下的性能表现;②分析预测与更新机制同步与否对滤波器稳定性与精度的影响;③评估系统在有色噪声等非理想观测条件下的适应能力,提升实际部署中的可靠性。; 阅读建议:建议结合MATLAB仿真代码进行实验复现,重点关注状态协方差传播、观测更新频率与噪声模型设置等关键环节,深入理解EKF SLAM在复杂环境下的行为特性。稀疏 landmark 与稠密 landmark 下 EKF SLAM 性能对比实验,预测更新同时进行与非同时进行对比 EKF SLAM 性能对比实验,EKF SLAM 在有色噪声下性能实验
内容概要:本文围绕“基于主从博弈的售电商多元零售套餐设计与多级市场购电策略”展开,结合Matlab代码实现,提出了一种适用于电力市场化环境下的售电商优化决策模型。该模型采用主从博弈(Stackelberg Game)理论构建售电商与用户之间的互动关系,售电商作为领导者制定电价套餐策略,用户作为跟随者响应电价并调整用电行为。同时,模型综合考虑售电商在多级电力市场(如日前市场、实时市场)中的【顶级EI复现】基于主从博弈的售电商多元零售套餐设计与多级市场购电策略(Matlab代码实现)购电组合优化,兼顾成本最小化与收益最大化,并引入不确定性因素(如负荷波动、可再生能源出力变化)进行鲁棒或随机优化处理。文中提供了完整的Matlab仿真代码,涵盖博弈建模、优化求解(可能结合YALMIP+CPLEX/Gurobi等工具)、结果可视化等环节,具有较强的可复现性和工程应用价值。; 适合人群:具备一定电力系统基础知识、博弈论初步认知和Matlab编程能力的研究生、科研人员及电力市场从业人员,尤其适合从事电力市场运营、需求响应、售电策略研究的相关人员。; 使用场景及目标:① 掌握主从博弈在电力市场中的建模方法;② 学习售电商如何设计差异化零售套餐以引导用户用电行为;③ 实现多级市场购电成本与风险的协同优化;④ 借助Matlab代码快速复现顶级EI期刊论文成果,支撑科研项目或实际系统开发。; 阅读建议:建议读者结合提供的网盘资源下载完整代码与案例数据,按照文档目录顺序逐步学习,重点关注博弈模型的数学表达与Matlab实现逻辑,同时尝试对目标函数或约束条件进行扩展改进,以深化理解并提升科研创新能力。
### 如何在 VSCode 中安装和配置 LeetCode 插件以及 Node.js 运行环境 #### 安装 LeetCode 插件 在 VSCode 的扩展市场中搜索 `leetcode`,找到官方提供的插件并点击 **Install** 按钮进行安装[^1]。如果已经安装过该插件,则无需重复操作。 #### 下载与安装 Node.js 由于 LeetCode 插件依赖于 Node.js 环境,因此需要下载并安装 Node.js。访问官方网站 https://nodejs.org/en/ 并选择适合当前系统的版本(推荐使用 LTS 版本)。按照向导完成安装流程后,需确认 Node.js 是否成功安装到系统环境中[^2]。 可以通过命令行运行以下代码来验证: ```bash node -v npm -v ``` 上述命令应返回对应的 Node.js 和 npm 的版本号。如果没有正常返回版本信息,则可能未正确配置环境变量。 #### 解决环境路径问题 即使完成了 Node.js 的安装,仍可能出现类似 “LeetCode extension needs Node.js installed in environment path” 或者 “command ‘leetcode.toggleLeetCodeCn’ not found” 的错误提示[^3]。这通常是因为 VSCode 未能识别全局的 Node.js 路径或者本地安装的 nvm 默认版本未被正确加载[^4]。 解决方法如下: 1. 手动指定 Node.js 可执行文件的位置 在 VSCode 设置界面中输入关键词 `leetcode`,定位至选项 **Node Path**,将其值设为实际的 Node.js 安装目录下的 `node.exe` 文件位置。例如:`C:\Program Files\nodejs\node.exe`。 2. 使用 NVM 用户管理工具调整默认版本 如果通过 nvm 工具切换了不同的 Node.js 版本,请确保设置了默认使用的版本号。可通过以下指令实现: ```bash nvm alias default <version> ``` 重新启动 VSCode 后测试功能键是否恢复正常工作状态。 --- #### 配置常用刷题语言 最后一步是在 VSCode 设置面板中的 LeetCode 插件部分定义个人习惯采用的主要编程语言作为默认提交方式之一。这样可以减少频繁修改编码风格的时间成本。 --- ### 总结 综上所述,要在 VSCode 上顺利启用 LeetCode 插件及其关联服务,除了基本插件本身外还需额外准备支持性的后台框架——即 Node.js 应用程序引擎;同时针对特定场景下产生的兼容性障碍采取针对性措施加以修正即可达成目标[^3]。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值