开篇先来个口诀,此口诀来自网上:
清零取反要用与,某位置一可用或
若要取反和交换,轻轻松松用异或
1) 清零
清零:快速对某一段数据单元的数据清零,即将其全部的二进制位为0。例如整型数a=321对其全部数据清零的操作为a=a&0x0。 321=0000 0001 0100 0001 &0=0000 0000 0000 0000
= 0000 0000 0000 0000
(2) 获取一个数据的指定位
获取一个数据的指定位。例如获得整型数a=的低八位数据的操作为a=a&0xFF。321=
0000 0001 0100 0001 & 0xFF =0000 0000 1111 11111
= 0000 0000 0100 0001
获得整型数a=的高八位数据的操作为a=a&0xFF00。==a&0XFF00==
321=0000 0001 0100 0001 & 0XFF00=1111 1111 0000 0000
= 0000 0001 0000 0000
(3)保留数据区的特定位
保留数据区的特定位。例如获得整型数a=的第7-8位(从0开始)位的数据操作为: 110000000
321=0000 0001 0100 0001 & 384=0000 0001 1000 0000
=0000 0001 0000 0000
2. | 位或运算
1) 运算规则
位或运算的实质是将参与运算的两个数据,按对应的二进制数逐位进行逻辑或运算。例如:int型常量5和7进行位或运算的表达式为5|7,结果如下:5= 0000 0000 0000 0101
| 7= 0000 0000 0000 0111=0000 0000 0000 0111
2) 主要用途
(1) 设定一个数据的指定位。例如整型数a=321,将其低八位数据置为1的操作为a=a|0XFF。321= 0000 0001 0100 0001 | 0000 0000 1111 1111=0000 0000 1111 1111
逻辑运算符||与位或运算符|的区别
条件“或”运算符 (||) 执行 bool 操作数的逻辑“或”运算,但仅在必要时才计算第二个操作数。 x || y , x | y 不同的是,如果 x 为 true,则不计算 y(因为不论 y 为何值,“或”操作的结果都为 true)。这被称作为“短路”计算。
3. ^ 位异或
1) 运算规则
位异或运算的实质是将参与运算的两个数据,按对应的二进制数逐位进行逻辑异或运算。只有当对应位的二进制数互斥的时候,对应位的结果才为真。例如:int型常量5和7进行位异或运算的表达式为5^7,结果如下:5=0000 0000 0000 0101^7=0000 0000 0000 0111
= 0000 0000 0000 0010
2) 典型应用
(1)定位翻转
定位翻转:设定一个数据的指定位,将1换为0,0换为1。例如整型数a=321,,将其低八位数据进行翻位的操作为a=a^0XFF;
(2)数值交换
数值交换。例如a=3,b=4。在例11-1中,无须引入第三个变量,利用位运算即可实现数据交换。以下的操作可以实现a,b两个数据的交换:
a=a^b;
b=b^a;
a=a^b;
4.~ 位非
位非运算的实质是将参与运算的两个数据,按对应的二进制数逐位进行逻辑非运算。
实例
----------------------+---------------------------+--------------------
去掉最后一位 ¦ (101101->10110) ¦ x >> 1
在最后加一个0 ¦ (101101->1011010) ¦ x < < 1
在最后加一个1 ¦ (101101->1011011) ¦ x < < 1+1
把最后一位变成1 ¦ (101100->101101) ¦ x ¦ 1
把最后一位变成0 ¦ (101101->101100) ¦ x ¦ 1-1
最后一位取反 ¦ (101101->101100) ¦ x ^ 1
把右数第k位变成1 ¦ (101001->101101,k=3) ¦ x ¦ (1 < < (k-1))
把右数第k位变成0 ¦ (101101->101001,k=3) ¦ x & ~ (1 < < (k-1))
右数第k位取反 ¦ (101001->101101,k=3) ¦ x ^ (1 < < (k-1))
取末三位 ¦ (1101101->101) ¦ x & 7
取末k位 ¦ (1101101->1101,k=5) ¦ x & ((1 < < k)-1)
取右数第k位 ¦ (1101101->1,k=4) ¦ x >> (k-1) & 1
把末k位变成1 ¦ (101001->101111,k=4) ¦ x ¦ (1 < < k-1)
末k位取反 ¦ (101001->100110,k=4) ¦ x ^ (1 < < k-1)
把右边连续的1变成0 ¦ (100101111->100100000) ¦ x & (x+1)
把右起第一个0变成1 ¦ (100101111->100111111) ¦ x ¦ (x+1)
把右边连续的0变成1 ¦ (11011000->11011111) ¦ x ¦ (x-1)
取右边连续的1 ¦ (100101111->1111) ¦ (x ^ (x+1)) >> 1
去掉右起第一个1的左边 ¦ (100101000->1000) ¦ x & (x ^ (x-1))
判断奇数 (x&1)==1
判断偶数 (x&1)==0
if (x == a) x= b; else x= a; 等价于 x= a ^ b ^ x;
x 的 相反数 表示为 (~x+1)从x位(高)到y位(低)间共有多少个1
public static int FindChessNum(int x, int y, ushort k)
{
int re = 0;
for (int i = y; i <= x; i++)
{
re += ((k >> (i - 1)) & 1);
}
return re;
}
对于两个整数x,y,如果用 (x+y)/2 求平均值,会产生溢出,因为 x+y 可能会大于INT_MAX,但是我们知道它们的平均值是肯定不会溢出的,我们用如下算法:
int average(int x, int y) //返回X,Y 的平均值
{
return (x&y)+((x^y)>>1);
}
判断一个整数是不是2的幂,对于一个数 x >= 0,判断他是不是2的幂
boolean power2(int x)
{
return ((x&(x-1))==0)&&(x!=0);
}
计算绝对值
int abs( int x )
{
int y ;
y = x >> 31 ;
return (x^y)-y ; //or: (x+y)^y
}
完整demo
#include <stdio.h>
//设置x的第y位为1
#define setbit(x,y) (x)|=(1<<(y-1))
//得到x的第y位的值
#define BitGet(Number,pos) ((Number)>>(pos-1)&1)
//打印x的值
#define print(x) printf("%d\n",x)
//将整数(4个字节)循环右移动k位
#define Rot(a,k) ((a)<<(k)|(a)>>(32-k))
//判断a是否为2的幂次数
#define POW2(a) ((((a)&(a-1))==0)&&(a!=0))
#define OPPX(x) (~(x)+1)
//返回X,Y 的平均值
int average(int x, int y)
{
return (x&y)+((x^y)>>1);
}
//判断a是否为2的幂次数
bool power2(int x)
{
return ((x&(x-1))==0)&&(x!=0);
}
//x与y互换
void swap(int& x , int& y)
{
x ^= y;
y ^= x;
x ^= y;
}
int main()
{
int a=0x000D;
print(a);
int b=BitGet(a,2);
print(b);
setbit(a,2);
print(a);
print(BitGet(a,2));
int c=Rot(a,33);
print(c);
print(BitGet(c,5));
printf("8+5=%d\n",average(8,692));
int i;
for (i=0;i<1000;i++)
{
if (POW2(i))//调用power2(i)
{
printf("%-5d",i);
}
}
printf("\n");
int x=10,y=90;
swap(x,y);
print(x);
print(y);
print(OPPX(-705));
return 0;
}
来来再看看HashMap中的应用:
//计算hash值的方法 通过键的hashCode来计算
static int hash(int h) {
// This function ensures that hashCodes that differ only by
// constant multiples at each bit position have a bounded
// number of collisions (approximately 8 at default load factor).
h ^= (h >>> 20) ^ (h >>> 12);
return h ^ (h >>> 7) ^ (h >>> 4);
}<pre name="code" class="java">static int indexFor(int h, int length) { //根据hash值和数组长度算出索引值
return h & (length-1); //这里不能随便算取,用hash&(length-1)是有原因的,这样可以确保算出来的索引是在数组大小范围内,不会超出
}