287. Find the Duplicate Number
Given an array nums containing n + 1 integers where each integer is between 1 and n (inclusive), prove that at least one duplicate number must exist. Assume that there is only one duplicate number, find the duplicate one.
Note:
- You must not modify the array (assume the array is read only).
- You must use only constant, O(1) extra space.
- Your runtime complexity should be less than
O(n2)
. - There is only one duplicate number in the array, but it could be repeated more than once.
这到题是说一个数组大小为n+1,其中只包括1-n的数,根据鸽巢原理,肯定有重复的数,假设只有一个数重复,找出重复的数。
由于不能使用额外的空间,不能使用记录或统计出现的数,又不能破坏数组结构,不能通过排序来判断相邻数是否相等。
1.暴力法,两层循环,时间复杂度O(n2)
太高。
2.用集合保存遍历值,时间复杂度n,但有额外空间开销。
3.归并排序,时间复杂度nlogn,空间复杂度 O(1),但破坏数组结果。
4.二分法,因为数出现在[1,n]。所以统计[1-n/2]的数,如果出现小于等于n/2的数个数超过n/2,[1-n/2]数中有重复的数,继续通过二分减少搜索范围,这里的时间复杂度为nlogn。
public int findDuplicate(int[] nums) {
int high=nums.length-1;
int low=0;
while(high>low){
int mid=(high+low)/2;
int count=0;
for(int i=0;i<nums.length;i++){
if(nums[i]<=mid)
count++;
}
if(count>mid)
high=mid;
else
low=mid+1;
}
return low;
}