1.概览
2.图计算
3.交互环境下的使用
4.tensor
5.变量(variables)
6.抓取(fetch)
7.填充(feeds)
1.概览:
TensorFlow是一种将计算表示为图的编程系统。图中的节点称为ops
(operation的简称)。一个ops
使用0个或以上的Ten在TensorFlow中,
,通过执行某些运算,产生0个或以上的Constant
是一种没有输入的ops
,但是你可以将它作为其他ops
的输入。Python库中的ops构造器
将返回构造器的输出。TensorFlow的Python库中有一个默认的图,将ops构造器
作为节点,更多可了解Graph Class文档。sorsTensors
。一个Tensor
是一个多维数组,例如,你可以将一批图像表示为一个四维的数组[batch, height, width, channels]
,数组中的值均为浮点数。
TensorFlow中的图描述了计算过程,图通过Session
的运行而执行计算。Session
将图的节点们(即ops)放置到计算设备(如CPUs和GPUs)上,然后通过方法执行它们;这些方法执行完成后,将返回tensors。在Python中的tensor的形式是numpy ndarray
对象,而在C/C++中则是tensorflow::Tensor
.
2.图计算:
TensorFlow程序中图的创建类似于一个 [施工阶段],而在 [执行阶段] 则利用一个session
来执行图中的节点。很常见的情况是,在 [施工阶段] 创建一个图来表示和训练神经网络,而在 [执行阶段] 在图中重复执行一系列的训练操作。
2.1.创建计算图:
在TensorFlow中,Constant
是一种没有输入的ops
,但是你可以将它作为其他ops
的输入。Python库中的ops构造器
将返回构造器的输出。TensorFlow的Python库中有一个默认的图,将ops构造器
作为节点,更多可了解Graph Class文档。
见下面的示例代码:
import tensorflow as tf
# Create a Constant op that produces a 1x2 matrix. The op is
# added as a node to the default graph.
#
# The value returned by the constructor represents the output
# of the Constant op.
matrix1 = tf.constant([[3., 3.]])
# Create another Constant that produces a 2x1 matrix.
matrix2 = tf.constant([[2.],[2.]])
# Create a Matmul op that takes 'matrix1' and 'matrix2' as inputs.
# The returned value, 'product', represents the result of the matrix
# multiplication.
product = tf.matmul(matrix1, matrix2)
默认的图(Default Graph)现在有了三个节点:两个 Constant()
ops和一个matmul()
op。为了得到这两个矩阵的乘积结果,还需要在一个session
中启动图计算。
2.2.在Session中执行图计算:
见下面的示例代码:
# Launch the default graph.
sess = tf.Session()
# To run the matmul op we call the session 'run()' method, passing 'product'
# which represents the output of the matmul op. This indicates to the call
# that we want to get the output of the matmul op back.
#
# All inputs needed by the op are run automatically by the session. They
# typically are run in parallel.
#
# The call 'run(product)' thus causes the execution of threes ops in the
# graph: the two constants and matmul.
#
# The output of the op is returned in 'result' as a numpy `ndarray` object.
result = sess.run(product)
print(result)
# ==> [[ 12.]]
# Close the Session when we're done.
sess.close()
Sessions最后需要关闭,以释放相关的资源;你也可以使用with
模块,session在with
模块中自动会关闭:
with tf.Session() as sess:
result = sess.run([product])
print(result)
3.交互环境下的使用:
以上的python示例中,使用了Session
和Session.run()
来执行图计算。然而,在一些Python的交互环境下(如IPython中),你可以使用InteractiveSession
类,以及Tensor.eval()
、Operation.run()
等方法。例如,在交互的Python环境下执行以下代码:
# Enter an interactive TensorFlow Session.
import tensorflow as tf
sess = tf.InteractiveSession()
x = tf.Variable([1.0, 2.0])
a = tf.constant([3.0, 3.0])
# Initialize 'x' using the run() method of its initializer op.
x.initializer.run()
# Add an op to subtract 'a' from 'x'. Run it and print the result
sub = tf.sub(x, a)
print(sub.eval())
# ==> [-2. -1.]
# Close the Session when we're done.
sess.close()
4.Tensors:
TensorFlow中使用tensor
数据结构(实际上就是一个多维数据)表示所有的数据,并在图计算中的节点之间传递数据。
5.变量(Variables):
变量在图执行的过程中,保持着自己的状态信息。下面代码中的变量充当了一个简单的计数器角色:
# Create a Variable, that will be initialized to the scalar value 0.
state = tf.Variable(0, name="counter")
# Create an Op to add one to `state`.
one = tf.constant(1)
new_value = tf.add(state, one)
update = tf.assign(state, new_value)
# Variables must be initialized by running an `init` Op after having
# launched the graph. We first have to add the `init` Op to the graph.
init_op = tf.initialize_all_variables()
# Launch the graph and run the ops.
with tf.Session() as sess:
# Run the 'init' op
sess.run(init_op)
# Print the initial value of 'state'
print(sess.run(state))
# Run the op that updates 'state' and print 'state'.
for _ in range(3):
sess.run(update)
print(sess.run(state))
# output:
# 0
# 1
# 2
# 3
6.抓取(fetch):
TensorFlow也提供这样的机制:先创建特定数据类型的占位符(placeholder),之后再进行数据的填充。例如下面的程序:
input1 = tf.placeholder(tf.float32) input2 = tf.placeholder(tf.float32) output = tf.mul(input1, input2) with tf.Session() as sess: print(sess.run([output], feed_dict={input1:[7.], input2:[2.]})) # output: # [array([ 14.], dtype=float32)]
7.填充(feeds):
TensorFlow也提供这样的机制:先创建特定数据类型的占位符(placeholder),之后再进行数据的填充。例如下面的程序:
input1 = tf.placeholder(tf.float32)
input2 = tf.placeholder(tf.float32)
output = tf.mul(input1, input2)
with tf.Session() as sess:
print(sess.run([output], feed_dict={input1:[7.], input2:[2.]}))
# output:
# [array([ 14.], dtype=float32)]