题目:
Given a binary tree containing digits from
0-9
only, each root-to-leaf path could represent a number.An example is the root-to-leaf path
1->2->3
which represents the number123
.Find the total sum of all root-to-leaf numbers.
Note: A leaf is a node with no children.
Example:
Input: [1,2,3]
1
/ \
2 3
Output: 25
Explanation:
The root-to-leaf path 1->2 represents the number 12.
The root-to-leaf path 1->3 represents the number 13.
Therefore, sum = 12 + 13 = 25.
Example 2:
Input: [4,9,0,5,1]
4
/ \
9 0
/ \
5 1
Output: 1026
Explanation:
The root-to-leaf path 4->9->5 represents the number 495.
The root-to-leaf path 4->9->1 represents the number 491.
The root-to-leaf path 4->0 represents the number 40.
Therefore, sum = 495 + 491 + 40 = 1026.
解法1:
此题可以用二叉树的后续遍历
/**
* Definition for a binary tree node.
* struct TreeNode {
* int val;
* TreeNode *left;
* TreeNode *right;
* TreeNode(int x) : val(x), left(NULL), right(NULL) {}
* };
*/
class Solution {
public:
int sumStack(stack<TreeNode*> s)
{
int sum = 0;
int i = 0;
while(!s.empty())
{
sum = sum + s.top()->val * (int)pow(10,i);
++i;
s.pop();
}
return sum;
}
int sumNumbers(TreeNode* root) {
int sum = 0;
stack<TreeNode* > s;
TreeNode* p = nullptr;
while(root != nullptr || !s.empty())
{
if(root != nullptr)
{
s.push(root);
root = root->left;
}
else
{
root = s.top();
if(root->left == nullptr && root->right == nullptr)
{
sum += sumStack(s);
}
if(root->right != nullptr && root->right != p)
{
root = root->right;
}
else
{
s.pop();
p = root;
root = nullptr;
}
}
}
return sum;
}
};
解法2:
class Solution {
public:
int sumNumbersHelp(TreeNode* root, int val)
{
if(root == nullptr)
return 0;
val = 10 * val + root->val;
if(root->left == nullptr && root->right == nullptr)
return val;
return sumNumbersHelp(root->left, val) + sumNumbersHelp(root->right, val);
}
int sumNumbers(TreeNode* root) {
return sumNumbersHelp(root, 0);
}
};