python3 数据分析项目案例,用python做数据分析案例

本篇文章给大家谈谈python3 数据分析项目案例,以及用python做数据分析案例,希望对各位有所帮助,不要忘了收藏本站喔。

第一部分:数据类型处理
  • 数据加载
    • 字段含义:
      • user_id:用户ID
      • order_dt:购买日期
      • order_product:购买产品的数量
      • order_amount:购买金额
  • 观察数据
    • 查看数据的数据类型
    • 数据中是否存储在缺失值
    • 将order_dt转换成时间类型
    • 查看数据的统计描述
    • 在源数据中添加一列表示月份:astype('datetime64[M]')

df = pd.read_csv('./data/CDNOW_master.txt',header=None,sep='\s+',names=['user_id','order_dt','order_product','order_amount'])  #sep='\s+'  分割间隔 一个或多个空格
df.head()

df.shape
(69659, 4)
#查看数据类型
df.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 69659 entries, 0 to 69658
Data columns (total 4 columns):
user_id          69659 non-null int64
order_dt         69659 non-null int64
order_product    69659 non-null int64
order_amount     69659 non-null float64
dtypes: float64(1), int64(3)
memory usage: 2.1 MB
 
 
#order_dt转换成时间序列,且加一列为购买商品的月份
df['order_dt'] = pd.to_datetime(df['order_dt'],format="%Y%m%d")
df.head()

df['month'] = df['order_dt'].astype('datetime64[M]')
df.head()

 df.describe()  #对数据源中的数值型数据的描述

第二部分:按月数据分析
  • 用户每月花费的总金额
    • 绘制曲线图展示
  • 所有用户每月的产品购买量
  • 所有用户每月的消费总次数
  • 统计每月的消费人数
#用户每月花费的总金额
df.groupby(by='month')['order_amount'].sum()
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值