BloomFilter——大规模数据处理利器

本文介绍Bloom过滤器的基本原理及应用场景,通过对比多种数据存储方式,展示Bloom过滤器如何有效解决大规模数据集的快速查询问题,并提供一个简单的Java实现案例。

Bloom Filter是由Bloom在1970年提出的一种多哈希函数映射的快速查找算法。通常应用在一些需要快速判断某个元素是否属于集合,但是并不严格要求100%正确的场合。

 

一. 实例 

  为了说明Bloom Filter存在的重要意义,举一个实例:

  假设要你写一个网络蜘蛛(web crawler)。由于网络间的链接错综复杂,蜘蛛在网络间爬行很可能会形成“环”。为了避免形成“环”,就需要知道蜘蛛已经访问过那些URL。给一个URL,怎样知道蜘蛛是否已经访问过呢?稍微想想,就会有如下几种方案:

  1. 将访问过的URL保存到数据库。

  2. 用HashSet将访问过的URL保存起来。那只需接近O(1)的代价就可以查到一个URL是否被访问过了。

  3. URL经过MD5或SHA-1等单向哈希后再保存到HashSet或数据库。

  4. Bit-Map方法。建立一个BitSet,将每个URL经过一个哈希函数映射到某一位。

  方法1~3都是将访问过的URL完整保存,方法4则只标记URL的一个映射位。

 

  以上方法在数据量较小的情况下都能完美解决问题,但是当数据量变得非常庞大时问题就来了。

  方法1的缺点:数据量变得非常庞大后关系型数据库查询的效率会变得很低。而且每来一个URL就启动一次数据库查询是不是太小题大做了?

  方法2的缺点:太消耗内存。随着URL的增多,占用的内存会越来越多。就算只有1亿个URL,每个URL只算50个字符,就需要5GB内存。

  方法3:由于字符串经过MD5处理后的信息摘要长度只有128Bit,SHA-1处理后也只有160Bit,因此方法3比方法2节省了好几倍的内存。

  方法4消耗内存是相对较少的,但缺点是单一哈希函数发生冲突的概率太高。还记得数据结构课上学过的Hash表冲突的各种解决方法么?若要降低冲突发生的概率到1%,就要将BitSet的长度设置为URL个数的100倍。

 

  实质上上面的算法都忽略了一个重要的隐含条件:允许小概率的出错,不一定要100%准确!也就是说少量url实际上没有没网络蜘蛛访问,而将它们错判为已访问的代价是很小的——大不了少抓几个网页呗。 

 

二. Bloom Filter的算法 

 

  废话说到这里,下面引入本篇的主角——Bloom Filter。其实上面方法4的思想已经很接近Bloom Filter了。方法四的致命缺点是冲突概率高,为了降低冲突的概念,Bloom Filter使用了多个哈希函数,而不是一个。

    Bloom Filter算法如下:

    创建一个m位BitSet,先将所有位初始化为0,然后选择k个不同的哈希函数。第i个哈希函数对字符串str哈希的结果记为h(i,str),且h(i,str)的范围是0到m-1 。

 

(1) 加入字符串过程 

 

  下面是每个字符串处理的过程,首先是将字符串str“记录”到BitSet中的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后将BitSet的第h(1,str)、h(2,str)…… h(k,str)位设为1。

 

  图1.Bloom Filter加入字符串过程

  很简单吧?这样就将字符串str映射到BitSet中的k个二进制位了。

 

(2) 检查字符串是否存在的过程 

 

  下面是检查字符串str是否被BitSet记录过的过程:

  对于字符串str,分别计算h(1,str),h(2,str)…… h(k,str)。然后检查BitSet的第h(1,str)、h(2,str)…… h(k,str)位是否为1,若其中任何一位不为1则可以判定str一定没有被记录过。若全部位都是1,则“认为”字符串str存在。

 

  若一个字符串对应的Bit不全为1,则可以肯定该字符串一定没有被Bloom Filter记录过。(这是显然的,因为字符串被记录过,其对应的二进制位肯定全部被设为1了)

  但是若一个字符串对应的Bit全为1,实际上是不能100%的肯定该字符串被Bloom Filter记录过的。(因为有可能该字符串的所有位都刚好是被其他字符串所对应)这种将该字符串划分错的情况,称为false positive 。

 

(3) 删除字符串过程 

   字符串加入了就被不能删除了,因为删除会影响到其他字符串。实在需要删除字符串的可以使用Counting bloomfilter(CBF),这是一种基本Bloom Filter的变体,CBF将基本Bloom Filter每一个Bit改为一个计数器,这样就可以实现删除字符串的功能了。

 

  Bloom Filter跟单哈希函数Bit-Map不同之处在于:Bloom Filter使用了k个哈希函数,每个字符串跟k个bit对应。从而降低了冲突的概率。

 

三. Bloom Filter参数选择 

 

   (1)哈希函数选择

     哈希函数的选择对性能的影响应该是很大的,一个好的哈希函数要能近似等概率的将字符串映射到各个Bit。选择k个不同的哈希函数比较麻烦,一种简单的方法是选择一个哈希函数,然后送入k个不同的参数。

   (2)Bit数组大小选择 

     哈希函数个数k、位数组大小m、加入的字符串数量n的关系可以参考参考文献1。该文献证明了对于给定的m、n,当 k = ln(2)* m/n 时出错的概率是最小的。

     同时该文献还给出特定的k,m,n的出错概率。例如:根据参考文献1,哈希函数个数k取10,位数组大小m设为字符串个数n的20倍时,false positive发生的概率是0.0000889 ,这个概率基本能满足网络爬虫的需求了。  

 

四. Bloom Filter实现代码 

    下面给出一个简单的Bloom Filter的Java实现代码:

 

复制代码
import java.util.BitSet;

publicclass BloomFilter 
{
/* BitSet初始分配2^24个bit */ 
privatestaticfinalint DEFAULT_SIZE =1<<25
/* 不同哈希函数的种子,一般应取质数 */
privatestaticfinalint[] seeds =newint[] { 571113313761 };
private BitSet bits =new BitSet(DEFAULT_SIZE);
/* 哈希函数对象 */ 
private SimpleHash[] func =new SimpleHash[seeds.length];

public BloomFilter() 
{
for (int i =0; i < seeds.length; i++)
{
func[i] 
=new SimpleHash(DEFAULT_SIZE, seeds[i]);
}
}

// 将字符串标记到bits中
publicvoid add(String value) 
{
for (SimpleHash f : func) 
{
bits.set(f.hash(value), 
true);
}
}

//判断字符串是否已经被bits标记
publicboolean contains(String value) 
{
if (value ==null
{
returnfalse;
}
boolean ret =true;
for (SimpleHash f : func) 
{
ret 
= ret && bits.get(f.hash(value));
}
return ret;
}

/* 哈希函数类 */
publicstaticclass SimpleHash 
{
privateint cap;
privateint seed;

public SimpleHash(int cap, int seed) 
{
this.cap = cap;
this.seed = seed;
}

//hash函数,采用简单的加权和hash
publicint hash(String value) 
{
int result =0;
int len = value.length();
for (int i =0; i < len; i++
{
result 
= seed * result + value.charAt(i);
}
return (cap -1& result;
}
}
}
复制代码

 

纸张与塑料实例分割数据集 一、基础信息 • 数据集名称:纸张与塑料实例分割数据集 • 图片数量: 训练集:5304张图片 验证集:440张图片 总计:5744张图片 • 训练集:5304张图片 • 验证集:440张图片 • 总计:5744张图片 • 分类类别: 纸张(paper):常见的可回收材料,广泛用于包装和日常用品。 塑料(plastic):合成聚合物材料,在垃圾处理和回收中需准确识别。 • 纸张(paper):常见的可回收材料,广泛用于包装和日常用品。 • 塑料(plastic):合成聚合物材料,在垃圾处理和回收中需准确识别。 • 标注格式:YOLO格式,包含实例分割多边形标注,适用于实例分割任务。 • 数据格式:图片数据来源于相关领域,标注精确,支持模型训练。 二、适用场景 • 垃圾自动分类系统开发:数据集支持实例分割任务,帮助构建能够精确分割纸张和塑料物体的AI模型,用于智能垃圾桶、回收设施或环境监测系统。 • 环境监测与保护应用:集成至环保监控平台,实时检测和分类垃圾,促进垃圾分类、回收和可持续发展。 • 学术研究与创新:支持计算机视觉与环保领域的交叉研究,为垃圾识别和材料分类提供数据基础,推动AI在环境科学中的应用。 • 工业自动化与物流:在制造业或物流环节中,用于自动化检测和分类材料,提升生产效率和资源管理。 三、数据集优势 • 精准标注与实用性:每张图片均经过仔细标注,实例分割边界精确,确保模型能够学习纸张和塑料的细粒度特征。 • 数据多样性:涵盖多种场景和条件,提升模型在不同环境下的泛化能力和鲁棒性。 • 任务适配性强:标注兼容主流深度学习框架(如YOLO等),可直接用于实例分割模型训练,并支持扩展至其他视觉任务。 • 应用价值突出:专注于可回收材料检测,为垃圾管理、环保政策和自动化系统提供可靠数据支撑,助力绿色科技发展。
代码转载自:https://pan.quark.cn/s/fc36d9cf1917 《建筑工程施工强制性条文检查记录》是针对建筑工程施工过程中的核心环节进行合规性审核的关键性文件,其目的在于保障施工质量与施工安全。 这份文件收录了建筑工程施工过程中必须遵守的国家强制性准则、指令和技术规范,对于建筑施工作业单位、监理机构以及相关行政管理部门而言,均构成不可替代的参考资料。 建筑工程施工强制性条文主要涵盖以下几个方面的内容:1. **设计与施工准则**:工程项目的设计需符合国家的建筑设计准则,涵盖结构稳固性、防火性能、抗震性能、环保性能等方面的标准。 在施工作业阶段,必须严格依照设计图纸和施工计划进行,任何变更均需获得设计单位的一致许可。 2. **建筑材料品质**:所有投入使用的建筑材料,例如混凝土、钢筋、砌块等,都必须具备出厂合格证明,并接受第三方检测机构的品质验证。 严禁采用不合格或已过有效期的材料。 3. **施工安全措施**:在施工作业期间必须恪守安全生产准则,设置安全防护装置,例如脚手架、安全网、警示标识等。 施工人员需接受安全知识培训,并使用个人防护用品。 4. **环境管理**:施工作业应控制噪音、粉尘、废弃物等对环境可能造成的负面影响,推行绿色施工理念,采取降尘、防噪、废弃物分类处理等手段。 5. **工程质量监管**:每个施工作业阶段完成后,需实施自检、互检和专项检查,确保每一道工序的合格性。 对于基础工程、主体结构、防水工程等关键部位,应执行严格的验收流程。 6. **工程验收流程**:工程完工后,必须依照国家规范进行验收,涵盖单位工程验收、分部工程验收和整体工程验收,确保工程符合设计和使用需求。 7. **文档管理**:施工作业期间产生的技术文件、检测报告、会议记...
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值