请为下面这段英文文本构造哈夫曼编码:
“Effificient and robust facial landmark localisation is crucial for the deployment of real-time face analysis systems. This paper presents a new loss function, namely Rectifified Wing (RWing) loss, for regression-based facial landmark localisation with Convolutional Neural Networks (CNNs). We fifirst systemically analyse different loss functions, including L2, L1 and smooth L1. The analysis suggests that the training of a network should pay more attention to small-medium errors. Motivated by this finding, we design a piece-wise loss that amplififies the impact of the samples with small-medium errors. Besides, we rectify the loss function for very small errors to mitigate the impact of inaccuracy of manual annotation”
要求如下:
1)请计算出每个字符出现的概率,并以概率为权重来构造哈夫曼树,写出构造过程、画出 最终的哈夫曼树,得到每个字符的哈夫曼编码。
2)请将上述设计哈夫曼编码的过程,用代码来实现,并输出各个字母的哈夫曼编码。(有代码,有运行结果的截图)
3)请分析算法的效率,至少包括时间复杂度和空间复杂度等。
2、完成一部电影需要很多环节,具体环节如下:
a:项目启动到确定导演需要1个时间,已确定导演到完善细节需要2个时间,已经完善细节到开始拍摄需要2个时间。
b:项目启动到确定演员需要3个时间,已确定导演到已确定演员需要1个时间,已确定演员到开始拍摄需要2个时间。
c:项目启动到完成场地确认需要5个时间,完成演员确定到完成场地确认需要1个时间,完成场地确认到完善细节需要1个时间,完成场地确认到开始拍摄需要2个时间。
请编写算法,计算出从项目启动到开始拍摄之间至少需要多少个时间?
要求:
1)请画出AOE图,找出关键路径,计算出从项目启动到开始拍摄之间至少需要多少个时间。
2)请将您的思路用代码来实现,并输出关键路径,以及计算出从项目启动到开始拍摄之间至少需要多少个时间。
3)请分析算法的效率,如时间复杂度和空间复杂度等。
#include<stdio.h>
#include<string.h>
#include<stdlib.h>
#include<windows.h>
typedef int Status;
#define MAXSIZE 100
#define LIST_INIT_SIZE 100
#define OK 1
typedef struct hnode/*定义二叉树的存储结点*/
{
//char name;
int weight;
int lchild,rchild,parent;
}HTNode,*HuffmanTree;
typedef char **HuffmanCode;
typedef struct//定义统计字符个数结构//
{
char name;//字符
int num;//出现次数
}ElemType;
typedef struct
{
ElemType *elem;
int length;//当前长
int listsize;//总长
} SqList;
Status InitList_Sq(SqList *L)//初始化顺序表
{
L->elem=(ElemType*)//声明类型
malloc(LIST_INIT_SIZE*sizeof(ElemType));//开辟空间
if (L->elem==NULL)
return 0;
L->length=0;
L->listsize=LIST_INIT_SIZE;
return OK;
}
Status Search(SqList L,char name)//查找原来表中是否已经有当前统计字符
{
int i;
for(i=0;i<=L.length;i++)
{
if(L.elem[i].name==name)
{
return i;//存在返回地址下标
break;
}
else if(i==L.length)
{
return -1; //不存在返回标志-1
}
}
}
void PrintList(HuffmanCode HC,SqList L,int m)//输出
{
int k=L.length;
for(int i=0;i<k;i++)
{
printf("字符: %c 出现次数:%d 概率:%d/%d 编码:%s\n",L.elem[i].name,L.elem[i].num,L.elem[i].num,m,HC[i+1]);
}
//printf("\n\n");
}
void InsertSort(SqList *L)//直接插入排序,以权值的大小升序
{
int i,j;
for(i=1;i<L->length;++i)
{
if(L->elem[i].num<L->elem[i-1].num)
{
L->elem[-1]=L->elem[i];
L->elem[i]=L->elem[i-1];
for(j=i-2;L->elem[-1].num<L->elem[j].num;--j)
{
L->elem[j+1]=L->elem[j];
}
L->elem[j+1]=L->elem[-1];//插入准确位置
}
}
}
void Select(HTNode HT[],int len,int &s1,int &s2)//选出权值最小的两个结点,下标通过s1和s2传出去
{
int i,min1=32767,min2=32767;
for(i=1;i<=len;i++)
{
if(HT[i].weight<min1&&HT[i].parent==0)
{
s2=s1;
min2=min1;
min1=HT[i].weight;
s1=i;
}
else if(HT[i].weight<min2&&HT[i].parent==0)
{ min2=HT[i].weight;
s2=i;
}
}
}
void CreateHuffman_tree(SqList L,HuffmanTree &HT,int n)/*建立n个叶子结点的哈夫曼树*/
{
//if (n<=1) return 0;
int m,i,s1,s2;
m=2*n-1;
HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));
for(i=1;i<=n;i++)
{
//scanf("%d",&HT[i].weight);
//HT[i].name=L.elem[i-1].name;
HT[i].weight=L.elem[i-1].num;
HT[i].parent=0;
HT[i].lchild=0;
HT[i].rchild=0;
}
for ( ;i<=m;++i)
{
HT[i].parent=0;
HT[i].lchild=0;
HT[i].rchild=0;
}
for (i=n+1;i<=m;++i)
{
Select(HT,i-1,s1,s2);
HT[s1].parent=i;
HT[s2].parent=i;
HT[i].lchild=s1;
HT[i].rchild=s2;
HT[i].weight=HT[s1].weight+HT[s2].weight;
}
}
void Huffman_code(HuffmanTree HT,HuffmanCode &HC,int n)//求哈夫曼编码
{
char *cd;
int i,start,c,f;
cd=(char*)malloc(n*sizeof(char));
cd[n-1]='\0';
HC=(HuffmanCode)malloc((n+1)*sizeof(char*));
for(i=1;i<=n;++i)
{
start=n-1;
c=i;
f=HT[i].parent;
while(f!=0)
{
--start;
if(HT[f].lchild==c) cd[start]='0';
else cd[start]='1';
c=f;
f=HT[f].parent;
}//while
HC[i]=(char*)malloc((n-start)*sizeof(char));
strcpy(HC[i],&cd[start]);
}
free(cd);
}
int main()
{
int i,k,d,j=0;
SqList L;//定义一个顺序表,存储统计的字符
InitList_Sq(&L);
char str[]="Effificient and robust facial landmark localisation is crucial for the deployment of real-time face analysis systems. This paper presents a new loss function, namely Rectifified Wing (RWing) loss, for regression-based facial landmark localisation with Convolutional Neural Networks (CNNs). We fifirst systemically analyse different loss functions, including L2, L1 and smooth L1. The analysis suggests that the training of a network should pay more attention to small-medium errors. Motivated by this finding, we design a piece-wise loss that amplififies the impact of the samples with small-medium errors. Besides, we rectify the loss function for very small errors to mitigate the impact of inaccuracy of manual annotation";
printf("原字符串:%s\n\n",str);
k=strlen(str);//计算原字符串的长度
printf("字符串长度:%d\n",k);
for(i=0;i<k;i++)
{
if(Search(L,str[i])==-1)//还未有统计该字符,开辟一个单元
{
j=L.length;
L.elem[j].name=str[i];
L.elem[j].num=1;//放入该字符,数量定位1
L.length++;//表长增加
}
else
{
d=Search(L,str[i]);//已经统计过,加一处理
L.elem[d].num=L.elem[d].num+1;
}
}
printf("总字符数:%d\n",L.length);
InsertSort(&L);
//进行哈夫曼编码
HuffmanTree HT;
HuffmanCode HC;
//int i, n;
//scanf("%d",&n);
CreateHuffman_tree(L,HT, L.length);/*建立哈夫曼树*/
Huffman_code(HT,HC,L.length);/*哈夫曼树编码*/
PrintList(HC,L,k);//按权重排序后输出统计结果和编码
return 0;
}