leetcode 63. Unique Paths II

本文介绍了解决LeetCode 63题的独特路径问题的方法,通过动态规划算法计算在一个存在障碍物的网格中从左上角到右下角的不同路径数量。给出的代码实现了对网格中每个位置进行状态转移,最终得到所有可能路径的数量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/*
leetcode 63. Unique Paths II

Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
    [0,0,0],
    [0,1,0],
    [0,0,0]
]

The total number of unique paths is 2.
Note: m and n will be at most 100.

解题思路:动态规划

dp[j] = dp[j] + dp[j-1]

*/

#include <iostream>
#include <vector>
#include <string>

using namespace std;

class Solution {
public:
    int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid) 
    {
        int m = obstacleGrid.size();
        int n = obstacleGrid[0].size();
        vector<int> dp(n ,0);   //初始化都为0

        dp[0] = 1;      //第0行0列的步数

        for (int i = 0; i < m; ++i)
        {
            if (obstacleGrid[i][0] == 1)        //边界处理:有一个为1,说明此路不通
                dp[0] = 0;
            for (int j = 1; j < n; ++j)
            {
                //dp[j]为第i行,第j列的步数
                if (obstacleGrid[i][j] == 1)
                    dp[j] = 0;
                else
                    dp[j] = dp[j] + dp[j - 1];
                cout << i << "," << j << ":" << dp[j] << endl;
            }
        }

        return dp[n - 1];
    }
};

void test()
{
    vector<vector<int>> ob{
        {0,0,0},
        {0,1,0},
        {0,0,0}
    };

    Solution sol;
    cout << sol.uniquePathsWithObstacles(ob) << endl;
}

int main()
{
    test();

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值