/*
leetcode 63. Unique Paths II
Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,
There is one obstacle in the middle of a 3x3 grid as illustrated below.
[
[0,0,0],
[0,1,0],
[0,0,0]
]
The total number of unique paths is 2.
Note: m and n will be at most 100.
解题思路:动态规划
dp[j] = dp[j] + dp[j-1]
*/
#include <iostream>
#include <vector>
#include <string>
using namespace std;
class Solution {
public:
int uniquePathsWithObstacles(vector<vector<int>>& obstacleGrid)
{
int m = obstacleGrid.size();
int n = obstacleGrid[0].size();
vector<int> dp(n ,0); //初始化都为0
dp[0] = 1; //第0行0列的步数
for (int i = 0; i < m; ++i)
{
if (obstacleGrid[i][0] == 1) //边界处理:有一个为1,说明此路不通
dp[0] = 0;
for (int j = 1; j < n; ++j)
{
//dp[j]为第i行,第j列的步数
if (obstacleGrid[i][j] == 1)
dp[j] = 0;
else
dp[j] = dp[j] + dp[j - 1];
cout << i << "," << j << ":" << dp[j] << endl;
}
}
return dp[n - 1];
}
};
void test()
{
vector<vector<int>> ob{
{0,0,0},
{0,1,0},
{0,0,0}
};
Solution sol;
cout << sol.uniquePathsWithObstacles(ob) << endl;
}
int main()
{
test();
return 0;
}
leetcode 63. Unique Paths II
最新推荐文章于 2024-07-26 10:47:39 发布