[Leetcode] 267. Palindrome Permutation II

这一题最主要的就是permutation中可自由permute的部分,对于Palindrome而言,前半部分的内容就已经决定了后半部分的内容,所以实质可以自由变换的部分就是前半部分。而对于palindrome而言,前半部分的内容,恰好就是由整体input的字符各取一半组成的。所以基本上,就是从整个input里,取一半的字符(如果字符个数是奇数且能够成为palindrome,多出来的那个非偶数的字符必然就是呆在中间的那个字符),然后排序也好随便也好组成一个新的字符串,并且对这个新的字符串进行permutation,每当一个permutation的结果出来,做镜像得到后半部分的字符串并且组合即可。

这一题的原理不是很复杂,代码就有点长了。因为主要由四步组成
1. 判断输入是否合法(也就是Palindrome Permutation)
2. 构成由半数字符的新字符串
3. permute这个新的字符串
4. 根据permute的结果进行镜像化处理得到最后的结果。

    private boolean checkPalinAndReorderOdd(char[] arr) {
        Map<Character, Integer> charCnt = new HashMap<>();        
        int oddPos = -1;
        for (char ch : arr) {
            charCnt.put(ch, charCnt.getOrDefault(ch, 0) + 1);
        }

        int indx = 0;
        boolean oddMet = false;
        for (char c : charCnt.keySet()) {
            int cnt = charCnt.get(c);
            for (int i = 0; i < cnt / 2; i++) {
                arr[indx] = c;
                indx++;
            }

            if (cnt % 2 != 0) {
                if (!oddMet && arr.length % 2 == 1) {
                    oddMet = true;
                    arr[arr.length / 2] = c;
                } else {
                    return false;
                }
            }
        }
        return true;
    }

    public List<String> generatePalindromes(String s) {
        char[] chArr = s.toCharArray();
        List<String> result = new LinkedList<>();
        if (!checkPalinAndReorderOdd(chArr)) return result;
        permutePalindrome(chArr, 0, result);
        return result;        
    }
    
    private void permutePalindrome(char[] arr, int pos, List<String> result) {
        if (pos >= arr.length / 2) {
            for (int i = 0; i < arr.length / 2; i++) {
                arr[arr.length - 1 - i] = arr[i];
            }
            result.add(new String(arr));
        } else {
            Set<Character> visited = new HashSet<>();
            for (int i = pos; i < arr.length / 2; i++) {
                if (visited.contains(arr[i])) continue;
                swap(arr, i, pos);
                permutePalindrome(arr, pos + 1, result);
                swap(arr, i, pos);
                visited.add(arr[i]);
            }
        }
    }
    
    private void swap(char[] arr, int pos1, int pos2) {
        char tmp = arr[pos1];
        arr[pos1] = arr[pos2];
        arr[pos2] = tmp;
    }

为了假装自己是inplace做的permutation(基于swap),这里的冗余代码真的太多了。自己又写了一个新的版本,performance更好,更简洁一些,相比用重组的字符串直接通过swap做permutation,用更原始的办法,即是一个字符统计器做permutation。代码如下:

    public HashMap<Character, Integer> checkPDAndReorderArr(char[] chArr) {
        HashMap<Character, Integer> chCnt = new HashMap<>();
        for (char c : chArr) chCnt.put(c, chCnt.getOrDefault(c, 0) + 1);
        boolean oddMet = false;
        for (Character c : chCnt.keySet()) {
            if (chCnt.get(c) % 2 == 1 && oddMet) return null;
            else if (chCnt.get(c) % 2 == 1) {
                oddMet = true;
                chArr[chArr.length / 2] = c;
                chCnt.put(c, chCnt.get(c) - 1);
            }
        }
        
        return chCnt;
    }
    
    public List<String> generatePalindromes(String s) {
        char[] chArr = s.toCharArray();
        List<String> result = new LinkedList<>();
        HashMap<Character, Integer> chCnt = checkPDAndReorderArr(chArr);
        if (chCnt == null) return result;
        genPDFromCounts(chCnt, chArr, result, 0);
        return result;
    }
    
    public void genPDFromCounts(HashMap<Character,Integer> chCnt, char[] cache, List<String> result, int cursor) {
        if (cursor >= cache.length / 2) {
            result.add(new String(cache));
        } else {
            for (Character c : chCnt.keySet()) {
                if (chCnt.get(c) == 0) continue;
                cache[cursor] = cache[cache.length - 1 - cursor] = c;
                chCnt.put(c, chCnt.get(c) - 2);
                genPDFromCounts(chCnt, cache, result, cursor + 1);
                chCnt.put(c, chCnt.get(c) + 2);
            }
        }
    }
1. Two Sum 2. Add Two Numbers 3. Longest Substring Without Repeating Characters 4. Median of Two Sorted Arrays 5. Longest Palindromic Substring 6. ZigZag Conversion 7. Reverse Integer 8. String to Integer (atoi) 9. Palindrome Number 10. Regular Expression Matching 11. Container With Most Water 12. Integer to Roman 13. Roman to Integer 14. Longest Common Prefix 15. 3Sum 16. 3Sum Closest 17. Letter Combinations of a Phone Number 18. 4Sum 19. Remove Nth Node From End of List 20. Valid Parentheses 21. Merge Two Sorted Lists 22. Generate Parentheses 23. Swap Nodes in Pairs 24. Reverse Nodes in k-Group 25. Remove Duplicates from Sorted Array 26. Remove Element 27. Implement strStr() 28. Divide Two Integers 29. Substring with Concatenation of All Words 30. Next Permutation 31. Longest Valid Parentheses 32. Search in Rotated Sorted Array 33. Search for a Range 34. Find First and Last Position of Element in Sorted Array 35. Valid Sudoku 36. Sudoku Solver 37. Count and Say 38. Combination Sum 39. Combination Sum II 40. First Missing Positive 41. Trapping Rain Water 42. Jump Game 43. Merge Intervals 44. Insert Interval 45. Unique Paths 46. Minimum Path Sum 47. Climbing Stairs 48. Permutations 49. Permutations II 50. Rotate Image 51. Group Anagrams 52. Pow(x, n) 53. Maximum Subarray 54. Spiral Matrix 55. Jump Game II 56. Merge k Sorted Lists 57. Insertion Sort List 58. Sort List 59. Largest Rectangle in Histogram 60. Valid Number 61. Word Search 62. Minimum Window Substring 63. Unique Binary Search Trees 64. Unique Binary Search Trees II 65. Interleaving String 66. Maximum Product Subarray 67. Binary Tree Inorder Traversal 68. Binary Tree Preorder Traversal 69. Binary Tree Postorder Traversal 70. Flatten Binary Tree to Linked List 71. Construct Binary Tree from Preorder and Inorder Traversal 72. Construct Binary Tree from Inorder and Postorder Traversal 73. Binary Tree Level Order Traversal 74. Binary Tree Zigzag Level Order Traversal 75. Convert Sorted Array to Binary Search Tree 76. Convert Sorted List to Binary Search Tree 77. Recover Binary Search Tree 78. Sum Root to Leaf Numbers 79. Path Sum 80. Path Sum II 81. Binary Tree Maximum Path Sum 82. Populating Next Right Pointers in Each Node 83. Populating Next Right Pointers in Each Node II 84. Reverse Linked List 85. Reverse Linked List II 86. Partition List 87. Rotate List 88. Remove Duplicates from Sorted List 89. Remove Duplicates from Sorted List II 90. Intersection of Two Linked Lists 91. Linked List Cycle 92. Linked List Cycle II 93. Reorder List 94. Binary Tree Upside Down 95. Binary Tree Right Side View 96. Palindrome Linked List 97. Convert Binary Search Tree to Sorted Doubly Linked List 98. Lowest Common Ancestor of a Binary Tree 99. Lowest Common Ancestor of a Binary Search Tree 100. Binary Tree Level Order Traversal II
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值