LRU Cache

本文介绍了一种实现LRU缓存的数据结构,通过结合哈希表与双向链表来支持快速获取与更新操作。文章详细解释了如何在容量限制下管理缓存,并提供了完整的代码实现。

https://oj.leetcode.com/problems/lru-cache/

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations:get and set.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
set(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.


public class LRUCache {
    
    public LRUCache(int capacity) {
        
    }
    
    public int get(int key) {
        
    }
    
    public void set(int key, int value) {
        
    }
}
这题是属于有固定做法的题目,本质上就是一个哈希表和双向链表的结合使用。

双向链表的长度为capacity,节点内容为key和value两项。哈希表的使用是为了O(1)的时间锁定键所对应的节点位置,所以键放的是key,值放的是链表里的key对应存放value的节点。在链表长度没有达到capacity之前,每一次set都只需要不停增加链表和往hashmap里面放内容即可。当然,根据LRU的定义,如果get的东西存在于cache中的话,就将节点从中间取出,然后放到链表尾表示它是最新的。当添加的节点数目超过了capacity,每次新加一个键值对的时候就把头结点从链表以及其对应的HashMap的内容也删除了。就可以了。主要小心链表的边界情况即可,譬如get的是链表末尾和头指针即可。下面给出代码:

    class LinkedListNode{
        int val, key;
        LinkedListNode next, prev;
        LinkedListNode(int x, int key){
            val = x;
            this.key = key;
        }
    }
    
    LinkedListNode head, tail;
    int size, cap;
    HashMap<Integer, LinkedListNode> cached_map;
    public LRUCache(int capacity) {
        cached_map = new HashMap<Integer, LinkedListNode>();
        size = 0;
        cap = capacity;
        head = tail = null;
    }
    
    public int get(int key) {
        if(cached_map.containsKey(key)){
            LinkedListNode n = cached_map.get(key);
            if(tail == n)
                return n.val;
            if(n == head)
                head = head.next;
            if(n.prev != null)
                n.prev.next = n.next;
            if(n.next != null)
                n.next.prev = n.prev;
            tail.next = n;
            n.prev = tail;
            tail = tail.next;
            tail.next = null;
            return n.val;
        }else{
            return -1;
        }
    }
    
    public void set(int key, int value) {
        if(cached_map.containsKey(key)){
            LinkedListNode n = cached_map.get(key);
            n.val = value;
            if(n == tail)
                return;
            if(n == head)
                head = head.next;
            if(n.prev != null)
                n.prev.next = n.next;
            if(n.next != null)
                n.next.prev = n.prev;
            tail.next = n;
            n.prev = tail;
            tail = tail.next;
            tail.next = null;
        }else{
            LinkedListNode n = new LinkedListNode(value,key);
            cached_map.put(key, n);
            if(head == null){
                head = tail = n;
            }else{
                tail.next = n;
                n.prev = tail;
                tail = tail.next;
            }
            size++;
            if(size > cap){
                cached_map.remove(head.key);
                head = head.next;
                head.prev.next =null;
                head.prev = null;
                size--;
            }
        }
    }


根据之前一个公司给我的面试评价:代码重复太多,我稍微修改了一下代码结构。让代码重用率增加。

    class ListNode{
        ListNode next,prev;
        Integer val, key;
        ListNode(int val, int key){
            this.key = key;
            this.val = val;
        }
    }
    
    class DList{
        ListNode head, tail;
        int capacity;
        int size;
        
        DList(int capacity){
            this.capacity = capacity;
            head = tail = null;
        }
        
        ListNode append(ListNode next){
            if(head == null){
                head = tail = next;
            }else{
                tail.next = next;
                next.prev = tail;
                tail = tail.next;
            }
            size++;
            if(size > capacity){
                return remove(head);
            }
            return null;
        }
        
        ListNode remove(ListNode node){
            if(node == head)
                head = head.next;
            if(node == tail)
                tail = tail.prev;
            if(node.prev != null)
                node.prev.next = node.next;
            if(node.next != null)
                node.next.prev = node.prev;
            node.prev = null;
            node.next = null;
            size--;
            return node;
        }
        
        void update(ListNode node){
            remove(node);
            append(node);
        }
        
    }
    
    DList list = null;
    HashMap<Integer, ListNode> cached = new HashMap<Integer, ListNode>();
    
    public LRUCache(int capacity) {
        list = new DList(capacity);
    }
    
    public int get(int key) {
        if(cached.containsKey(key)){
            ListNode curNode = cached.get(key);
            list.update(curNode);
            return curNode.val;
        }else{
            return -1;
        }
    }
    
    public void set(int key, int value) {
        if(cached.containsKey(key)){
            ListNode curNode = cached.get(key);
            curNode.val = value;
            list.update(curNode);
        }else{
            ListNode next = new ListNode(value, key);
            ListNode candidate = list.append(next);
            cached.put(key, next);
            if(candidate != null){
                cached.remove(candidate.key);
            }
        }
    }


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值