Trajectory Forecasting:TrajNet++

TrajNet++是一个针对自动驾驶和服务机器人等领域的轨迹预测基准测试平台,着重于拥挤场景中的人际交互建模。该平台提供大量轨迹数据和统一的评估系统,以便对不同方法进行公平比较。主要指标包括平均位移误差(ADE)、最终位移误差(FDE)、预测碰撞(Col-I)和地面真实碰撞(Col-II),以及多模态预测的Topk_ADE、Topk_FDE和平均负对数似然(NLL)。这些指标用于衡量预测轨迹的准确性和多样性。
部署运行你感兴趣的模型镜像

概述

由于自动驾驶和服务机器人等人工智能新兴应用的需求不断增长,拥挤场景中的轨迹预测已成为近年来的一个重要话题。轨迹预测的一项重要挑战是有效地建模社交互动。在过去的几年中,已经提出了几种新颖的方法。然而,这些方法已经在可用数据的不同子集上进行了评估,因此很难客观地比较结果。
TrajNet++,是一个大规模的以交互为中心的基于轨迹的基准测试。不仅包含适当的轨迹采样数据,而且提供统一的广泛评估系统来测试收集的方法以进行公平比较。

标注格式

场景

{“scene”: {“id”: 266, “p”: 254, “s”: 10238, “e”: 10358, “fps”: 2.5, “tag”: 2}}

id: scene id
p: pedestrian ID
s, e: starting and ending frames id of pedestrian “p”
fps: frame rate.
tag: trajectory type. Discussed in detail below.

轨迹

{“track”: {“f”: 10238, “p”: 248, “x”: 13.2, “y”: 5.85, “pred_number”: 0, “scene_id”: 123}}

f: frame id
p: pedestrian ID
x, y: x and y coordinates in meters of pedestrian “p” in frame “f”.
pred_number: prediction number. This is useful when you are providing multiple predictions as opposed to a single prediction. Max 3 predictions allowed
scene_id: This is useful when you are providing predictions of other agents in the scene as opposed to only primary pedestrian prediction.

轨迹分类

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

评价

UNIMODAL METRICS: SINGLE PREDICTION

Average Displacement Error (ADE): Average L2 distance between the ground truth and prediction of the primary pedestrian over all predicted time steps. Lower is better.

Final Displacement Error (FDE): The L2 distance between the final ground truth coordinates and the final prediction coordinates of the primary pedestrian. Lower is better

Prediction Collision (Col-I): Calculates the percentage of collisions of primary pedestrian with neighbouring pedestrians in the scene. The model prediction of neighbouring pedestrians is used to check the occurrence of collisions. Lower is better.

Ground Truth Collision (Col-II): Calculates the percentage of collisions of primary pedestrian with neighbouring pedestrians in the scene. The ground truth of neighbouring pedestrians is used to check the occurrence of collisions. Lower is better.

MULTIMODAL METRICS: MULTIPLE PREDICTION

Topk Average Displacement Error (Topk_ADE): Given k output predictions for an observed scene, the metric calculates the ADE of the prediction which is closest to the groundtruth trajectory in terms of ADE. Lower is better. In this challenge, k=3

Topk Final Displacement Error (Topk_FDE): Given k output predictions for an observed scene, the metric calculate the FDE of the prediction which is closest to the groundtruth trajectory in terms of ADE. Lower is better. In this challenge, k=3

Average NLL (NLL): Given n output predictions for an observed scene, the metric calculates the average negative log-likelihood of groundtruth trajectory in the model prediction distribution over the prediction horizon. Higher is better. In this challenge, n=50.

Reference

您可能感兴趣的与本文相关的镜像

Qwen3-VL-30B

Qwen3-VL-30B

图文对话
Qwen3-VL

Qwen3-VL是迄今为止 Qwen 系列中最强大的视觉-语言模型,这一代在各个方面都进行了全面升级:更优秀的文本理解和生成、更深入的视觉感知和推理、扩展的上下文长度、增强的空间和视频动态理解能力,以及更强的代理交互能力

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值