SQL查询效率-100w数据查询只要1秒

本文通过具体实例展示如何在拥有100万条记录的数据库中,将查询时间从8秒缩短到1秒。主要技巧包括使用合适的索引、采用联接查询代替子查询,并介绍了一些SQL查询优化的原则。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

SQL查询效率-100w数据查询只要1秒

关于SQL查询效率,100w数据,查询只要1秒,与您分享:

机器情况
p4: 2.4
内存: 1 G
os: windows 2003
数据库: ms sql server 2000
目的: 查询性能测试,比较两种查询的性能

SQL查询效率 step by step

-- setp 1.
-- 建表
create table t_userinfo
(
userid int identity(1,1) primary key nonclustered,
nick varchar(50) not null default '',
classid int not null default 0,
writetime datetime not null default getdate()
)
go

-- 建索引
create clustered index ix_userinfo_classid on t_userinfo(classid)
go

-- step 2.

declare @i int
declare @k int
declare @nick varchar(10)
set @i = 1
while @i<1000000
begin
  set @k = @i % 10
  set @nick = convert(varchar,@i)
  insert into t_userinfo(nick,classid,writetime) values(@nick,@k,getdate())
  set @i = @i + 1
end
--  耗时 08:27 ,需要耐心等待

-- step 3.
select top 20 userid,nick,classid,writetime from t_userinfo
where userid not in
(
select top 900000 userid from t_userinfo order by userid asc
)

-- 耗时 8 秒 ,够长的

-- step 4.
select a.userid,b.nick,b.classid,b.writetime from
(
select top 20 a.userid from
(
select top 900020 userid from t_userinfo order by userid asc
) a order by a.userid desc
) a inner join t_userinfo b on a.userid = b.userid
order by a.userid asc

-- 耗时 1 秒,太快了吧,不可以思议

-- step 5 where 查询
select top 20 userid,nick,classid,writetime from t_userinfo
where classid = 1 and userid not in
(
select top 90000 userid from t_userinfo
where classid = 1
order by userid asc
)
-- 耗时 2 秒

-- step 6 where 查询
select a.userid,b.nick,b.classid,b.writetime from
(
select top 20 a.userid from
(
select top 90000 userid from t_userinfo
where classid = 1
order by userid asc
) a order by a.userid desc
) a inner join t_userinfo b on a.userid = b.userid
order by a.userid asc

-- 查询分析器显示不到 1 秒.


查询效率分析:
子查询为确保消除重复值,必须为外部查询的每个结果都处理嵌套查询。在这种情况下可以考虑用联接查询来取代。
如果要用子查询,那就用EXISTS替代IN、用NOT EXISTS替代NOT IN。因为EXISTS引入的子查询只是测试是否存在符合子查询中指定条件的行,效率较高。无论在哪种情况下,NOT IN都是最低效的 。因为它对子查询中的表执行了一个全表遍历。

建立合理的索引,避免扫描多余数据,避免表扫描!
几百万条数据,照样几十毫秒完成查询.

### Pandas 文件格式读写操作教程 #### 1. CSV文件的读取与保存 Pandas 提供了 `read_csv` 方法用于从 CSV 文件中加载数据到 DataFrame 中。同样,也可以使用 `to_csv` 将 DataFrame 数据保存为 CSV 文件。 以下是具体的代码示例: ```python import pandas as pd # 读取CSV文件 df = pd.read_csv('file.csv') # 加载本地CSV文件 [^1] # 保存DataFrame为CSV文件 df.to_csv('output.csv', index=False) # 不保存行索引 [^1] ``` --- #### 2. JSON文件的读取与保存 对于JSON格式的数据,Pandas 支持通过 `read_json` 和 `to_json` 进行读取和存储。无论是本地文件还是远程 URL 都支持。 具体实现如下所示: ```python # 读取本地JSON文件 df = pd.read_json('data.json') # 自动解析为DataFrame对象 [^3] # 从URL读取JSON数据 url = 'https://example.com/data.json' df_url = pd.read_json(url) # 直接从网络地址获取数据 # 保存DataFrame为JSON文件 df.to_json('output.json', orient='records') ``` --- #### 3. Excel文件的读取与保存 针对Excel文件操作Pandas 使用 `read_excel` 来读取 `.xls` 或 `.xlsx` 格式的文件,并提供 `to_excel` 方法导出数据至 Excel 表格。 注意:需要安装额外依赖库 `openpyxl` 或 `xlrd` 才能正常运行这些功能。 ```python # 安装必要模块 (如果尚未安装) !pip install openpyxl xlrd # 读取Excel文件 df_excel = pd.read_excel('file.xlsx', sheet_name='Sheet1') # 导出DataFrame为Excel文件 df.to_excel('output.xlsx', sheet_name='Sheet1', index=False) ``` --- #### 4. SQL数据库的交互 当涉及关系型数据库时,Pandas 可借助 SQLAlchemy 库连接各种类型的数据库(如 SQLite, MySQL)。它允许直接查询并将结果作为 DataFrame 返回;或者反过来把现有 DataFrame 插入到指定表中。 下面是基于SQLite的一个例子: ```python from sqlalchemy import create_engine # 创建引擎实例 engine = create_engine('sqlite:///database.db') # 查询SQL语句并返回DataFrame query = "SELECT name, salary, department FROM employees" sql_df = pd.read_sql(query, engine) # 计算各部门平均工资 avg_salary_by_dept = sql_df.groupby('department')['salary'].mean() # 将DataFrame存回SQL表 avg_salary_by_dept.to_sql(name='average_salaries_per_department', con=engine, if_exists='replace', index=True) ``` 上述片段说明了如何执行基本SQL命令以及后续数据分析流程[^4]。 --- #### 5. 多层次索引(MultiIndex)的应用场景 除了常规单维度索引外,在某些复杂情况下可能需要用到多级索引结构。这时可以依靠 MultiIndex 构建更加灵活的数据模型。 例如定义一个多层列名体系: ```python arrays = [['A','A','B','B'], ['foo','bar','foo','bar']] tuples = list(zip(*arrays)) index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second']) df_multi_indexed = pd.DataFrame([[0,1,2,3], [4,5,6,7]], columns=index) print(df_multi_indexed) ``` 这段脚本演示了怎样构建一个具有双重分类标签的表格布局[^2]。 --- ### 总结 综上所述,Pandas 是一种强大而易用的数据处理工具包,适用于多种常见文件类型之间的相互转换及其高级特性应用开发之中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值