Follow up for "Unique Paths":
Now consider if some obstacles are added to the grids. How many unique paths
would there be?
An obstacle and empty space is marked as 1 and 0 respectively in the grid.
For example,There is one obstacle in the middle of a 3x3 grid as illustrated below.
[[0,0,0],
[0,1,0],
[0,0,0]]
The total number of unique paths is 2.
Note: m and n will be at most 100.
加入对矩阵元素是否为1的判断来初始化数组,只能使用二维数组。
public class Solution {
public int uniquePathsWithObstacles(int[][] obstacleGrid) {
if(obstacleGrid==null||obstacleGrid.length<=0)
return 0;
int m=obstacleGrid.length;
int n=obstacleGrid[0].length;
if(obstacleGrid[0][0]==1||obstacleGrid[m-1][n-1]==1)
return 0;
int[][] dp=new int[m][n];
dp[0][0]=1;
for(int i=1;i<m;i++){
if(obstacleGrid[i][0]==1)
dp[i][0]=0;
else
dp[i][0]=dp[i-1][0];
}
for(int i=1;i<n;i++){
if(obstacleGrid[0][i]==1)
dp[0][i]=0;
else
dp[0][i]=dp[0][i-1];
}
for(int i=1; i<m; ++i){
for(int j=1; j<n; ++j){
if(obstacleGrid[i][j]==1)
dp[i][j]=0;
else
dp[i][j]+=dp[i][j-1]+dp[i-1][j];
}
}
return dp[m-1][n-1];
}
}