const int N = 33 * 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid =
imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );
__global__ void dot( float *a, float *b, float *c ) {
__shared__ float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x;
float temp = 0;
while (tid < N) {
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
}
// set the cache values
cache[cacheIndex] = temp;
// synchronize threads in this block
__syncthreads();
// for reductions, threadsPerBlock must be a power of 2
// because of the following code
int i = blockDim.x/2;
while (i != 0) {
if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];
__syncthreads();
i /= 2;
}
if (cacheIndex == 0)
c[blockIdx.x] = cache[0];
}
int main( void ) {
float *a, *b, c, *partial_c;
float *dev_a, *dev_b, *dev_partial_c;
// allocate memory on the cpu side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) );
partial_c = (float*)malloc( blocksPerGrid*sizeof(float) );
// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_partial_c,
blocksPerGrid*sizeof(float) ) );
// fill in the host memory with data
for (int i=0; i<N; i++) {
a[i] = i;
b[i] = i*2;
}
// copy the arrays 'a' and 'b' to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),
cudaMemcpyHostToDevice ) );
dot<<<blocksPerGrid,threadsPerBlock>>>( dev_a, dev_b,
dev_partial_c );
// copy the array 'c' back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( partial_c, dev_partial_c,
blocksPerGrid*sizeof(float),
cudaMemcpyDeviceToHost ) );
// finish up on the CPU side
c = 0;
for (int i=0; i<blocksPerGrid; i++) {
c += partial_c[i];
}
#define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", c,
2 * sum_squares( (float)(N - 1) ) );
// free memory on the gpu side
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_partial_c ) );
// free memory on the cpu side
free( a );
free( b );
free( partial_c );
}
struct Lock {
int *mutex;
Lock( void ) {
HANDLE_ERROR( cudaMalloc( (void**)&mutex,sizeof(int) ) );
HANDLE_ERROR( cudaMemset( mutex, 0, sizeof(int) ) );
}
~Lock( void ) {
cudaFree( mutex );
}
__device__ void lock( void ) {
while( atomicCAS( mutex, 0, 1 ) != 0 );
}
__device__ void unlock( void ) {
atomicExch( mutex, 0 );
}
};
#define imin(a,b) (a<b?a:b)
const int N = 33 * 1024 * 1024;
const int threadsPerBlock = 256;
const int blocksPerGrid =
imin( 32, (N+threadsPerBlock-1) / threadsPerBlock );
__global__ void dot( Lock lock, float *a,
float *b, float *c ) {
__shared__ float cache[threadsPerBlock];
int tid = threadIdx.x + blockIdx.x * blockDim.x;
int cacheIndex = threadIdx.x;
float temp = 0;
while (tid < N) {
temp += a[tid] * b[tid];
tid += blockDim.x * gridDim.x;
}
// set the cache values
cache[cacheIndex] = temp;
// synchronize threads in this block
__syncthreads();
// for reductions, threadsPerBlock must be a power of 2
// because of the following code
int i = blockDim.x/2;
while (i != 0) {
if (cacheIndex < i)
cache[cacheIndex] += cache[cacheIndex + i];
__syncthreads();
i /= 2;
}
if (cacheIndex == 0) {
// wait until we get the lock
lock.lock();
// we have the lock at this point, update and release
*c += cache[0];
lock.unlock();
}
}
int main( void ) {
float *a, *b, c = 0;
float *dev_a, *dev_b, *dev_c;
// allocate memory on the cpu side
a = (float*)malloc( N*sizeof(float) );
b = (float*)malloc( N*sizeof(float) );
// allocate the memory on the GPU
HANDLE_ERROR( cudaMalloc( (void**)&dev_a,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_b,
N*sizeof(float) ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_c,
sizeof(float) ) );
// fill in the host memory with data
for (int i=0; i<N; i++) {
a[i] = i;
b[i] = i*2;
}
// copy the arrays 'a' and 'b' to the GPU
HANDLE_ERROR( cudaMemcpy( dev_a, a, N*sizeof(float),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_b, b, N*sizeof(float),
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMemcpy( dev_c, &c, sizeof(float),
cudaMemcpyHostToDevice ) );
Lock lock;
dot<<<blocksPerGrid,threadsPerBlock>>>( lock, dev_a,
dev_b, dev_c );
// copy c back from the GPU to the CPU
HANDLE_ERROR( cudaMemcpy( &c, dev_c,
sizeof(float),
cudaMemcpyDeviceToHost ) );
#define sum_squares(x) (x*(x+1)*(2*x+1)/6)
printf( "Does GPU value %.6g = %.6g?\n", c,
2 * sum_squares( (float)(N - 1) ) );
// free memory on the gpu side
HANDLE_ERROR( cudaFree( dev_a ) );
HANDLE_ERROR( cudaFree( dev_b ) );
HANDLE_ERROR( cudaFree( dev_c ) );
// free memory on the cpu side
free( a );
free( b );
}
__global__ void histo_kernel( unsigned char *buffer,
long size,
unsigned int *histo ) {
// calculate the starting index and the offset to the next
// block that each thread will be processing
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd( &histo[buffer[i]], 1 );
i += stride;
}
}
int main( void ) {
unsigned char *buffer =
(unsigned char*)big_random_block( SIZE );
// capture the start time
// starting the timer here so that we include the cost of
// all of the operations on the GPU.
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
// allocate memory on the GPU for the file's data
unsigned char *dev_buffer;
unsigned int *dev_histo;
HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) );
HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE,
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_histo,
256 * sizeof( int ) ) );
HANDLE_ERROR( cudaMemset( dev_histo, 0,
256 * sizeof( int ) ) );
// kernel launch - 2x the number of mps gave best timing
cudaDeviceProp prop;
HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) );
int blocks = prop.multiProcessorCount;
histo_kernel<<<blocks*2,256>>>( dev_buffer, SIZE, dev_histo );
unsigned int histo[256];
HANDLE_ERROR( cudaMemcpy( histo, dev_histo,
256 * sizeof( int ),
cudaMemcpyDeviceToHost ) );
// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );
long histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// verify that we have the same counts via CPU
for (int i=0; i<SIZE; i++)
histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0)
printf( "Failure at %d! Off by %d\n", i, histo[i] );
}
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );
cudaFree( dev_histo );
cudaFree( dev_buffer );
free( buffer );
return 0;
}
__global__ void histo_kernel( unsigned char *buffer,
long size,
unsigned int *histo ) {
// clear out the accumulation buffer called temp
// since we are launched with 256 threads, it is easy
// to clear that memory with one write per thread
__shared__ unsigned int temp[256];
temp[threadIdx.x] = 0;
__syncthreads();
// calculate the starting index and the offset to the next
// block that each thread will be processing
int i = threadIdx.x + blockIdx.x * blockDim.x;
int stride = blockDim.x * gridDim.x;
while (i < size) {
atomicAdd( &temp[buffer[i]], 1 );
i += stride;
}
// sync the data from the above writes to shared memory
// then add the shared memory values to the values from
// the other thread blocks using global memory
// atomic adds
// same as before, since we have 256 threads, updating the
// global histogram is just one write per thread!
__syncthreads();
atomicAdd( &(histo[threadIdx.x]), temp[threadIdx.x] );
}
int main( void ) {
unsigned char *buffer =
(unsigned char*)big_random_block( SIZE );
// capture the start time
// starting the timer here so that we include the cost of
// all of the operations on the GPU. if the data were
// already on the GPU and we just timed the kernel
// the timing would drop from 74 ms to 15 ms. Very fast.
cudaEvent_t start, stop;
HANDLE_ERROR( cudaEventCreate( &start ) );
HANDLE_ERROR( cudaEventCreate( &stop ) );
HANDLE_ERROR( cudaEventRecord( start, 0 ) );
// allocate memory on the GPU for the file's data
unsigned char *dev_buffer;
unsigned int *dev_histo;
HANDLE_ERROR( cudaMalloc( (void**)&dev_buffer, SIZE ) );
HANDLE_ERROR( cudaMemcpy( dev_buffer, buffer, SIZE,
cudaMemcpyHostToDevice ) );
HANDLE_ERROR( cudaMalloc( (void**)&dev_histo,
256 * sizeof( int ) ) );
HANDLE_ERROR( cudaMemset( dev_histo, 0,
256 * sizeof( int ) ) );
// kernel launch - 2x the number of mps gave best timing
cudaDeviceProp prop;
HANDLE_ERROR( cudaGetDeviceProperties( &prop, 0 ) );
int blocks = prop.multiProcessorCount;
histo_kernel<<<blocks*2,256>>>( dev_buffer,
SIZE, dev_histo );
unsigned int histo[256];
HANDLE_ERROR( cudaMemcpy( histo, dev_histo,
256 * sizeof( int ),
cudaMemcpyDeviceToHost ) );
// get stop time, and display the timing results
HANDLE_ERROR( cudaEventRecord( stop, 0 ) );
HANDLE_ERROR( cudaEventSynchronize( stop ) );
float elapsedTime;
HANDLE_ERROR( cudaEventElapsedTime( &elapsedTime,
start, stop ) );
printf( "Time to generate: %3.1f ms\n", elapsedTime );
long histoCount = 0;
for (int i=0; i<256; i++) {
histoCount += histo[i];
}
printf( "Histogram Sum: %ld\n", histoCount );
// verify that we have the same counts via CPU
for (int i=0; i<SIZE; i++)
histo[buffer[i]]--;
for (int i=0; i<256; i++) {
if (histo[i] != 0)
printf( "Failure at %d!\n", i );
}
HANDLE_ERROR( cudaEventDestroy( start ) );
HANDLE_ERROR( cudaEventDestroy( stop ) );
cudaFree( dev_histo );
cudaFree( dev_buffer );
free( buffer );
return 0;
}
注:本文是作者对GPU高性能编程CUDA实战的学习总结。此书的代码可以在下面的链接下载,无需积分哦!
http://download.youkuaiyun.com/detail/celerychen2009/6360573