扩展欧几里德算法是用来在已知a, b求解一组p,q使得p * a+q * b = Gcd(a, b) (解一定存在,根据数论中的相关定理)。
算法描述为:
int exGcd(int a, int b, int &x, int &y)
{
if(b == 0)
{
x = 1;
y = 0;
return a;
}
int r = exGcd(b, a % b, x, y);
int t = x;
x = y;
y = t - a / b * y;
return r;
}
把这个实现和Gcd的递归实现相比,发现多了下面的x,y赋值过程,这就是扩展欧几里德算法的精髓。
可以这样思考:
对于a' = b, b' = a % b 而言,我们求得 x, y使得 a'x + b'y = Gcd(a', b')
由于b' = a % b = a - a / b * b (注:这里的/是程序设计语言中的除法)
那么可以得到:
a'x + b'y = Gcd(a', b') ===>
bx + (a - a / b * b)y = Gcd(a', b') = Gcd(a, b) ===>
ay +b(x - a / b*y) = Gcd(a, b)
因此对于a和b而言,他们的相对应的p,q分别是 y和(x-a/b*y)。
下面就一个题目来讲讲:
青蛙的约会
Time Limit: 1000MS | | Memory Limit: 10000K |
Total Submissions: 40254 | | Accepted: 5680 |
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
关于这题的解法:
由题意:
(x+mt)-(y+nt)=pL
=>(m-n)t-(y-x)=pL
=>(m-n)t-pL=(y-x) 即 (m-n)t≡(y-x)MOD(L)
令a=m-n,b=L,c=y-x,X=t,Y=p
则原等式转换为 aX-bY=c
使用扩展欧几里德 求出一组解X0,Y0=>aX0-bY0=GCD(a,b)
令d=GCD(a,b) 若c%d!=0 则无解
否则对于等式
aX0-bY0=d
=>a[X0/d]-b[Y0/d]=1
=>a[c*X0/d]-b[c*Y0/d]=c
此时c*X0/d即为所求的t
可以证明其为在0附近的最小解,由于c可能小于0,则加b(X增b,Y减a,和不变)使之为正解。
以下是写了很久但很短的AC代码:
#include<iostream>
using namespace std;
__int64 X,Y;
__int64 exgcd(int a,int b)
{
if(b==0)
{
X=1;
Y=0;
return a;
}
__int64 d=exgcd(b,a%b);
__int64 t=X;
X=Y;
Y=t-(a/b)*X;
return d;
}
int main()
{
__int64 x,y,m,n,l;
while(cin>>x>>y>>m>>n>>l)
{
__int64 a=m-n;
__int64 b=l;
__int64 c=y-x;
if(a<0)
{
a=-a;
c=-c;
}
__int64 d=exgcd(a,b);
if(c%d!=0||m==n)
cout<<"Impossible"<<endl;
else
{
c/=d;
b/=d;
cout<<((c*X)%b+b)%b<<endl;
}
}
return 0;
}