codeforces 675D Tree Construction

本文介绍了一种在数轴上进行覆盖的问题解决思路,利用线段树进行高效维护,通过比较左右节点确定父节点,实现算法优化。代码示例展示了使用二分查找和树状数组进行具体实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题解:看上去很难,实际上蛮简单的……考虑一根数轴,那么每次一个点被加入后,这根数轴上从“已经加入的点中这个点左边的点”到“已经加入的点中这个点右边的点”的这些还没被加入的点,他们被加入进来之后的父亲就会是这个点了。所以问题转化为实现覆盖就好了。这个可以用线段树维护。不过有更简单的做法,不需要真的去覆盖,只要加入的时候看一下左边的点和右边的点哪一个后被加入,那个后加入的点就是它的父亲了。这个可以用一个set来实现,不会用set的也可以用树状数组加二分来模拟(比如我)……

代码如下:

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<string> 
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;

int n;
int a[100010],re[100010];
int tt[100010],bj[100010];

int find(int x){int sum=0;for(;x;x-=x&(-x)) sum+=tt[x];return sum;}
void add(int x,int k){for(;x<=n;x+=x&(-x)) tt[x]+=k;}

int main()
{
	int L,R,mid,l,r,ans;
	scanf("%d",&n);
	for(int i=1;i<=n;i++){scanf("%d",&a[i]);re[i]=a[i];}
	sort(re+1,re+1+n);
	for(int i=1;i<=n;i++)
	{
	   L=1;R=n;
	   while(L<R){mid=(L+R)>>1;if(re[mid]>=a[i]) R=mid;else L=mid+1;}
	   a[i]=L;
	}
	add(a[1],1);bj[a[1]]=1;
	for(int i=2;i<=n;i++)
	{
	   add(a[i],1);bj[a[i]]=i;
	   if(find(a[i])==1) l=1;
	   else
	   {
	   	 L=1;R=a[i]-1;
	     while(L<R)
	     {
	   	   mid=(L+R)>>1;
	   	   if(find(mid)==find(a[i])-1) R=mid;
	   	   else L=mid+1;
	     }
	     l=L+1;
	   }
	   if(find(a[i])==i) r=n;
	   else
	   {
	   	 L=a[i];R=n;
	     while(L<R)
	     {
	   	   mid=(L+R+1)>>1;
	   	   if(find(mid)>find(a[i])) R=mid-1;
	   	   else L=mid;
	     }
	     r=L;
	   }
	   if(bj[l-1]>bj[r+1]) ans=re[l-1];else ans=re[r+1];
	   printf("%d ",ans);
	}
	return 0;
}

 

### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值