目标检测基础概念

目标检测是找出图像中物体的类别和位置,涉及分类、定位任务。深度学习算法如两阶段的R-CNN系列和一阶段的YOLO、SSD用于目标检测。应用包括人脸、行人检测、医学影像分析等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目标检测基础概念

1 什么是目标检测?

在这里插入图片描述

​ 目标检测(Object Detection)的任务是找出图像中所有感兴趣的目标(物体),确定它们的类别和位置,是计算机视觉领域的核心问题之一。由于各类物体有不同的外观、形状和姿态,加上成像时光照、遮挡等因素的干扰,目标检测一直是计算机视觉领域最具有挑战性的问题。

​ 计算机视觉中关于图像识别有四大类任务:

分类-Classification:解决“是什么?”的问题,即给定一张图片或一段视频判断里面包含什么类别的目标。

定位-Location:解决“在哪里?”的问题,即定位出这个目标的的位置。

检测-Detection:解决“是什么?在哪里?”的问题,即定位出这个目标的的位置并且知道目标物是什么。

分割-Segmentation:分为实例的分割(Instance-level)和场景分割(Scene-level),解决“每一个像素属于哪个目标物或场景”的问题。

2 目标检测要解决的核心问题?

除了图像分类之外,目标检测要解决的核心问题是:

1.目标可能出现在图像的任何位置。

2.目标有各种不同的大小。

3.目标可能有各种不同的形状。

3 目标检测算法分类?

在这里插入图片描述

基于深度学习的目标检测算法主要分为两类:

1.Two stage目标检测算法

​ 先进行区域生成(region proposal,RP)(一个有可能包含待检物体的预选框),再通过卷积神经网络进行样本分类。

​ 任务:特征提取—>生成RP—>分类/定位回归。

​ 常见的two stage目标检测算法有:R-CNN、SPP-Net、Fast R-CNN、Faster R-CNN和R-FCN等。

2.One stage目标检测算法

​ 不用RP,直接在网络中提取特征来预测物体分类和位置。

​ 任务:特征提取—>分类/定位回归。

​ 常见的one stage目标检测算法有:OverFeat、YOLOv1、YOLOv2、YOLOv3、SSD和RetinaNet等。

###4 目标检测有哪些应用?

​ 目标检测具有巨大的实用价值和应用前景。应用领域包括人脸检测、行人检测、车辆检测、飞机航拍或卫星图像中道路的检测、车载摄像机图像中的障碍物检测、医学影像在的病灶检测等。还有在安防领域中,可以实现比如安全帽、安全带等动态检测,移动侦测、区域入侵检测、物品看护等功能。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值