二分查找 适用于单调函数中逼近求解某点的值。
如果遇到凸性或凹形函数时,可以用三分查找求那个凸点或凹点。
下面的方法应该是三分查找的一个变形。
如图所示,已知左右端点L、R,要求找到白点的位置。
思路:通过不断缩小 [L,R] 的范围,无限逼近白点。
做法:先取 [L,R] 的中点 mid,再取 [mid,R] 的中点 mmid,通过比较 f(mid) 与 f(mmid) 的大小来缩小范围。
当最后 L=R-1 时,再比较下这两个点的值,我们就找到了答案。
1、当 f(mid) > f(mmid) 的时候,我们可以断定 mmid 一定在白点的右边。
反证法:假设 mmid 在白点的左边,则 mid 也一定在白点的左边,又由 f(mid) > f(mmid) 可推出 mmid < mid,与已知矛盾,故假设不成立。
所以,此时可以将 R = mmid 来缩小范围。
2、当 f(mid) < f(mmid) 的时候,我们可以断定 mid 一定在白点的左边。
反证法:假设 mid 在白点的右边,则 mmid 也一定在白点的右边,又由 f(mid) < f(mmid) 可推出 mid > mmid,与已知矛盾,故假设不成立。
同理,此时可以将 L = mid 来缩小范围。
int three_divide(int left,int right){
int mid,mmid;
while(left<right-1){
mid=(left+right)/2;
mmid=(mid+right)/2;
if(f(mid)>f(mmid))
right=mmid;
else
left=mid;
}
return f(left)>f(right)?left:right;
}
//另一种方法
double three_divide(double left,double right){
double mid1,mid2;
while(righ-left>=eps){
mid1=left+(right-left)/3;
mid2=right-(rigth-left)/3;
if(f(mid1)>f(mid2))
right=mid2;
else
left=mid1;
}
return (left+right)/2;
}